Modeling of the Effect of Path Planning on Thermokinetic Evolutions in Laser Powder Deposition Process

نویسنده

  • EHSAN FOROOZMEHR
چکیده

A thermokinetic model coupling finite-element heat transfer with transformation kinetics is developed to determine the effect of deposition patterns on the phase-transformation kinetics of laser powder deposition (LPD) process of a hot-work tool steel. The finite-element model is used to define the temperature history of the process used in an empirical-based kinetic model to analyze the tempering effect of the heating and cooling cycles of the deposition process. An area is defined to be covered by AISI H13 on a substrate of AISI 1018 with three different deposition patterns: one section, two section, and three section. The two-section pattern divides the area of the one-section pattern into two sections, and the three-section pattern divides that area into three sections. The results show that dividing the area under deposition into smaller areas can influence the phase transformation kinetics of the process and, consequently, change the final hardness of the deposited material. The two-section pattern shows a higher average hardness than the one-section pattern, and the three-section pattern shows a fully hardened surface without significant tempered zones of low hardness. To verify the results, a microhardness test and scanning electron microscope were used.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermokinetic Modeling of Phase Transformation in the Laser Powder Deposition Process

A finite element model coupled with a thermokinetic model is developed to predict the phase transformation of the laser deposition of AISI 4140 on a substrate with the same material. Four different deposition patterns, long-bead, short-bead, spiral-in, and spiral-out, are used to cover a similar area. Using a finite element model, the temperature history of the laser powder deposition (LPD) pro...

متن کامل

Effect of path planning on the laser powder deposition process: thermal and structural evaluation

In this study, ANSYS finite element software is used to simulate the temperature and stress field in the laser powder deposition process. The model is used to determine the effect of the deposition pattern on the final stress distribution. Four deposition patterns are defined to cover the same area: long bead, short bead, spiral in, and spiral out. The results show that the deposition pattern s...

متن کامل

The effect of process parameters on laser-deposited TI-6A1-4V

The purpose of this research is to understand how the process parameters surrounding the Direct Metal Deposition (DMD) process affect the properties of the deposition. The powder used in this research is pre-alloyed titanium powder (Ti-6Al4V), containing 6% wt. aluminum and 4% wt. vanadium. The DMD process involves injecting metallic powder into a weld pool created by a high power industrial la...

متن کامل

Experimental Investigation of Effective Parameters at Laser Sintering the Mixture of Iron and Copper Powder

Optimization of process parameter is one of the ideal goals in laser sintering. The results of this process were measured as output parameters like: density, micro hardening, macro hardening, tension, roughness, stiffness, balling. In this paper, the influence of input parameter such as laser power, scan speed, material powder and etc are surveyed on output parameter like balling affection and ...

متن کامل

Experimental Investigation of Effective Parameters at Laser Sintering the Mixture of Iron and Copper Powder

Optimization of process parameter is one of the ideal goals in laser sintering. The results of this process were measured as output parameters like: density, micro hardening, macro hardening, tension, roughness, stiffness, balling. In this paper, the influence of input parameter such as laser power, scan speed, material powder and etc are surveyed on output parameter like balling affection and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011