Intersecting faces of a simplicial complex via algebraic shifting
نویسنده
چکیده
A family A of sets is t-intersecting if the size of the intersection of every pair of sets in A is at least t, and it is an r-family if every set in A has size r. A wellknown theorem of Erdős, Ko, and Rado bounds the size of a t-intersecting r-family of subsets of an n-element set, or equivalently of (r−1)-dimensional faces of a simplex with n vertices. As a generalization of the Erdős-Ko-Rado theorem, Borg presented a conjecture concerning the size of a t-intersecting r-family of faces of an arbitrary simplicial complex. He proved his conjecture for shifted complexes. In this paper we give a new proof for this result based on work of Woodroofe. Using algebraic shifting we verify Borg’s conjecture in the case of sequentially Cohen-Macaulay i-near-cones for t = i.
منابع مشابه
Se p 20 07 Algebraic Shifting and f - Vector Theory Thesis submitted
This manuscript focusses on algebraic shifting and its applications to f -vector theory of simplicial complexes and more general graded posets. It includes attempts to use algebraic shifting for solving the g-conjecture for simplicial spheres, which is considered by many as the main open problem in f -vector theory. While this goal has not been achieved, related results of independent interest ...
متن کاملAlgebraic Shifting and f-Vector Theory
This manuscript focusses on algebraic shifting and its applications to f -vector theory of simplicial complexes and more general graded posets. It includes attempts to use algebraic shifting for solving the g-conjecture for simplicial spheres, which is considered by many as the main open problem in f -vector theory. While this goal has not been achieved, related results of independent interest ...
متن کاملGeneric Initial Ideals and Exterior Algebraic Shifting of Join of Simplicial Complexes
The relation between algebraic shifting and join which was conjectured by Nevo [8] is studied. Let σ ∗ τ denote a join of two simplicial complexes σ and τ . Let ∆(σ) denote the exterior algebraic shifting of a simplicial complex σ. In the present paper, we will prove ∆(σ ∗ τ) ≤L ∆(∆(σ) ∗∆(τ)).
متن کاملThe Behavior of Graded Betti Numbers via Algebraic Shifting and Combinatorial Shifting
Let ∆ be a simplicial complex and I∆ its Stanley–Reisner ideal. We write ∆ for the exterior algebraic shifted complex of ∆ and ∆ for a combinatorial shifted complex of ∆. It will be proved that for all i and j one has the inequalities βii+j(I∆e) ≤ βii+j(I∆c) on the graded Betti numbers of I∆e and I∆c . In addition, the bad behavior of graded Betti numbers of I∆c will be studied.
متن کاملAlgebraic shifting and strongly edge decomposable complexes
Let Γ be a simplicial complex with n vertices, and let ∆(Γ) be either its exterior algebraic shifted complex or its symmetric algebraic shifted complex. If Γ is a simplicial sphere, then it is known that (a) ∆(Γ) is pure and (b) h-vector of Γ is symmetric. Kalai and Sarkaria conjectured that if Γ is a simplicial sphere then its algebraic shifting also satisfies (c) ∆(Γ) ⊂ ∆(C(n, d)), where C(n,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Mathematics
دوره 339 شماره
صفحات -
تاریخ انتشار 2016