Schematic models for dynamic yielding of sheared colloidal glasses.

نویسندگان

  • Matthias Fuchs
  • Michael E Cates
چکیده

The nonlinear rheological properties of dense suspensions are discussed within simplified models, suggested by a recent first principles approach to the model of Brownian particles in a constant-velocity-gradient solvent flow. Shear thinning of colloidal fluids and dynamical yielding of colloidal glasses arise from a competition between a slowing down of structural relaxation, because of particle interactions, and enhanced decorrelation of fluctuations, caused by the shear advection of density fluctuations. A mode coupling approach is developed to explore the shear-induced suppression of particle caging and the resulting speed-up of the structural relaxation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-Newtonian viscosity of interacting Brownian particles : comparison of theory and data

A recently developed first-principles approach to the non-linear rheology of dense colloidal suspensions is evaluated and its results compared to those from simulations of sheared systems close to their glass transitions. The predicted scenario of a universal transition of the structural dynamics between yielding of glasses and non-Newtonian (shear-thinning) fluid flow appears well obeyed, and ...

متن کامل

Shear-induced anisotropic decay of correlations in hard-sphere colloidal glasses

Spatial correlations of microscopic fluctuations are investigated via real-space experiments and computer simulations of colloidal glasses under steady shear. It is shown that while the distribution of one-particle fluctuations is always isotropic regardless of the relative importance of shear as compared to thermal fluctuations, their spatial correlations show a marked sensitivity to the compe...

متن کامل

Glass rheology: From mode-coupling theory to a dynamical yield criterion.

The mode coupling theory (MCT) of glasses, while offering an incomplete description of glass transition physics, represents the only established route to first-principles prediction of rheological behavior in nonergodic materials such as colloidal glasses. However, the constitutive equations derivable from MCT are somewhat intractable, hindering their practical use and also their interpretation...

متن کامل

Short- and long-range correlated motion observed in colloidal glasses and liquids

We use a confocal microscope to examine the motion of individual particles in a dense colloidal suspension. Close to the glass transition, particle motion is strongly spatially correlated. The correlations decay exponentially with particle separation, yielding a dynamic length scale of O(2–3σ ) (in terms of particle diameter σ ). This length scale grows modestly as the glass transition is appro...

متن کامل

Local shear transformations in deformed and quiescent hard-sphere colloidal glasses.

We perform a series of deformation experiments on a monodisperse, hard-sphere colloidal glass while simultaneously following the three-dimensional trajectories of roughly 50,000 individual particles with a confocal microscope. In each experiment, we deform the glass in pure shear at a constant strain rate [(1-5)×10(-5) s(-1)] to maximum macroscopic strains (5%-10%) and then reverse the deformat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Faraday discussions

دوره 123  شماره 

صفحات  -

تاریخ انتشار 2003