Localization of PBP3 in Caulobacter crescentus is highly dynamic and largely relies on its functional transpeptidase domain.

نویسندگان

  • Teresa Costa
  • Richa Priyadarshini
  • Christine Jacobs-Wagner
چکیده

In rod-shaped bacteria, septal peptidoglycan synthesis involves the late recruitment of the ftsI gene product (PBP3 in Escherichia coli) to the FtsZ ring. We show that in Caulobacter crescentus, PBP3 accumulates at the new pole at the beginning of the cell cycle. Fluorescence recovery after photobleaching experiments reveal that polar PBP3 molecules are, constantly and independently of FtsZ, replaced by those present in the cellular pool, implying that polar PBP3 is not a remnant of the previous division. By the time cell constriction is initiated, all PBP3 polar accumulation has disappeared in favour of an FtsZ-dependent localization near midcell, consistent with PBP3 function in cell division. Kymograph analysis of time-lapse experiments shows that the recruitment of PBP3 to the FtsZ ring is progressive and initiated very early on, shortly after FtsZ ring formation and well before cell constriction starts. Accumulation of PBP3 near midcell is also highly dynamic with a rapid exchange of PBP3 molecules between midcell and cellular pools. Localization of PBP3 at both midcell and pole appears multifactorial, primarily requiring the catalytic site of PBP3. Collectively, our results suggest a role for PBP3 in pole morphogenesis and provide new insights into the process of peptidoglycan assembly during division.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diverse functions for six glycosyltransferases in Caulobacter crescentus cell wall assembly.

The essential process of peptidoglycan synthesis requires two enzymatic activities, transpeptidation and transglycosylation. While the PBP2 and PBP3 transpeptidases perform highly specialized functions that are widely conserved, the specific roles of different glycosyltransferases are poorly understood. For example, Caulobacter crescentus encodes six glycosyltransferase paralogs of largely unkn...

متن کامل

A dynamic complex of signaling proteins uses polar localization to regulate cell-fate asymmetry in Caulobacter crescentus.

Cellular asymmetry is critical to metazoan development and the life cycle of many microbes. In Caulobacter, cell cycle progression and the formation of asymmetric daughter cells depend on the polarly-localized histidine kinase CckA. How CckA is regulated and why activity depends on localization are unknown. Here, we demonstrate that the unorthodox kinase DivL promotes CckA activity and that the...

متن کامل

Osmolality-dependent relocation of penicillin-binding protein PBP2 to the division site in Caulobacter crescentus.

The synthesis of the peptidoglycan cell wall is carefully regulated in time and space. In nature, this essential process occurs in cells that live in fluctuating environments. Here we show that the spatial distributions of specific cell wall proteins in Caulobacter crescentus are sensitive to small external osmotic upshifts. The penicillin-binding protein PBP2, which is commonly branded as an e...

متن کامل

Critical clamp loader processing by an essential AAA+ protease in Caulobacter crescentus.

Chromosome replication relies on sliding clamps that are loaded by energy-dependent complexes. In Escherichia coli, the ATP-binding clamp loader subunit DnaX exists as both long (τ) and short (γ) forms generated through programmed translational frameshifting, but the need for both forms is unclear. Here, we show that in Caulobacter crescentus, DnaX isoforms are unexpectedly generated through pa...

متن کامل

A multimeric pole-organizing protein critical for chromosome attachment, division and protein localization in Caulobacter

Cell polarization is an integral part of many unrelated bacterial processes. How intrinsic cell polarization is achieved is poorly understood. Here, we provide evidence that Caulobacter crescentus uses a multimeric pole-organizing factor (PopZ) that serves as a hub to concurrently achieve several polarizing functions. During chromosome segregation, polar PopZ captures the ParB•ori complex and t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular microbiology

دوره 70 3  شماره 

صفحات  -

تاریخ انتشار 2008