Coupling basin- and site-scale inverse models of the Española aquifer.
نویسندگان
چکیده
Large-scale models are frequently used to estimate fluxes to small-scale models. The uncertainty associated with these flux estimates, however, is rarely addressed. We present a case study from the Española Basin, northern New Mexico, where we use a basin-scale model coupled with a high-resolution, nested site-scale model. Both models are three-dimensional and are analyzed by codes FEHM and PEST. Using constrained nonlinear optimization, we examine the effect of parameter uncertainty in the basin-scale model on the nonlinear confidence limits of predicted fluxes to the site-scale model. We find that some of the fluxes are very well constrained, while for others there is fairly large uncertainty. Site-scale transport simulation results, however, are relatively insensitive to the estimated uncertainty in the fluxes. We also compare parameter estimates obtained by the basin- and site-scale inverse models. Differences in the model grid resolution (scale of parameter estimation) result in differing delineation of hydrostratigraphic units, so the two models produce different estimates for some units. The effect is similar to the observed scale effect in medium properties owing to differences in tested volume. More important, estimation uncertainty of model parameters is quite different at the two scales. Overall, the basin inverse model resulted in significantly lower estimates of uncertainty, because of the larger calibration dataset available. This suggests that the basin-scale model contributes not only important boundary condition information but also improved parameter identification for some units. Our results demonstrate that caution is warranted when applying parameter estimates inferred from a large-scale model to small-scale simulations, and vice versa.
منابع مشابه
Basin-scale transmissivity and storativity estimation using hydraulic tomography.
While tomographic inversion has been successfully applied to laboratory- and field-scale tests, here we address the new issue of scale that arises when extending the method to a basin. Specifically, we apply the hydraulic tomography (HT) concept to jointly interpret four multiwell aquifer tests in a synthetic basin to illustrate the superiority of this approach to a more traditional Theis analy...
متن کاملHydrothermal waters from karst aquifer: Case study of the Trozza basin (Central Tunisia)
Tunisia is rich in geothermal resources from ancient civilizations. Hydrothermal activity in Tunisia has been related to three main stages: magmatic and tectonic activities, eustatisme (Atlantic and Mediterranean coupling) and climate change. The principal factor and the responsable of this phenomenon is the meteoric water by piston flow processes. It constitue the catalyst of volcanism. The Tr...
متن کاملDevelopment and Application of Numerical Models to Estimate Fluxes through the Regional Aquifer beneath the Pajarito Plateau
primarily agricultural) and decreased baseflow because of groundwater production. For example, in 2002 the Before recent drilling and characterization efforts in the vicinity State of New Mexico was unable to honor interstate of Los Alamos National Laboratory (LANL), conceptual models had been developed for recharge and discharge in the regional aquifer on stream compacts for surface water deli...
متن کاملModeling of karst and alluvial springs discharge in the central Alborz highlands and on the Caspian southern coasts
Springs are the important water resources, which thier study is necessary in terms of their management and exploitation. In northern Iran, the karst springs locate in the central Alborz highlands and alluvial springs on the Caspian southern coasts.The Karst and alluvial springs discharge is variable because of different conditions in terms of aquifer, topography and precipitation .This study ha...
متن کاملHydro-Geological Context of Mikkes Springs and Different Variations of their Flows (Morocco)
The Mikkes basin is located at the north center of Morocco. It comprises three different zones which represent diversified geologies which shelter a phreatic and confined aquifer in the Sais basin and a shallow aquifer in the Tabular Middle Atlas. The springs in the Sais phreatic aquifer have suffered a maximum depletion. The springs with a deep or mixed origin are known as low flow variation s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Ground water
دوره 41 2 شماره
صفحات -
تاریخ انتشار 2003