C-terminal interaction is essential for surface trafficking but not for heteromeric assembly of GABA(b) receptors.
نویسندگان
چکیده
Assembly of fully functional GABA(B) receptors requires heteromerization of the GABA(B(1)) and GABA(B(2)) subunits. It is thought that GABA(B(1)) and GABA(B(2)) undergo coiled-coil dimerization in their cytoplasmic C termini and that assembly is necessary to overcome GABA(B(1)) retention in the endoplasmatic reticulum (ER). We investigated the mechanism underlying GABA(B(1)) trafficking to the cell surface. We identified a signal, RSRR, proximal to the coiled-coil domain of GABA(B(1)) that when deleted or mutagenized allows for surface delivery in the absence of GABA(B(2)). A similar motif, RXR, was recently shown to function as an ER retention/retrieval (ERR/R) signal in K(ATP) channels, demonstrating that G-protein-coupled receptors (GPCRs) and ion channels use common mechanisms to control surface trafficking. A C-terminal fragment of GABA(B(2)) is able to mask the RSRR signal and to direct the GABA(B(1)) monomer to the cell surface, where it is functionally inert. This indicates that in the heteromer, GABA(B(2)) participates in coupling to the G-protein. Mutagenesis of the C-terminal coiled-coil domains in GABA(B(1)) and GABA(B(2)) supports the possibility that their interaction is involved in shielding the ERR/R signal. However, assembly of heteromeric GABA(B) receptors is possible in the absence of the C-terminal domains, indicating that coiled-coil interaction is not necessary for function. Rather than guaranteeing heterodimerization, as previously assumed, the coiled-coil structure appears to be important for export of the receptor complex from the secretory apparatus.
منابع مشابه
The C-terminal domains of the GABA(b) receptor subunits mediate intracellular trafficking but are not required for receptor signaling.
GABA(B) receptors are G-protein-coupled receptors that mediate slow synaptic inhibition in the brain and spinal cord. These receptors are heterodimers assembled from GABA(B1) and GABA(B2) subunits, neither of which is capable of producing functional GABA(B) receptors on homomeric expression. GABA(B1,) although able to bind GABA, is retained within the endoplasmic reticulum (ER) when expressed a...
متن کاملThe RXR-type endoplasmic reticulum-retention/retrieval signal of GABAB1 requires distant spacing from the membrane to function.
Functional gamma-aminobutyric acid type B (GABA(B)) receptors are normally only observed upon coexpression of GABA(B1) with GABA(B2) subunits. A C-terminal arginine-based endoplasmic reticulum (ER) retention/retrieval signal, RSRR, prevents escape of unassembled GABA(B1) subunits from the ER and restricts surface expression to correctly assembled heteromeric receptors. The RSRR signal in GABA(B...
متن کاملA Trafficking Checkpoint Controls GABAB Receptor Heterodimerization
Surface expression of GABA(B) receptors requires heterodimerization of GB1 and GB2 subunits, but little is known about mechanisms that ensure efficient heterodimer assembly. We found that expression of the GB1 subunit on the cell surface is prevented through a C-terminal retention motif RXR(R); this sequence is reminiscent of the ER retention/retrieval motif RKR identified in subunits of the AT...
متن کاملDifferential trafficking of GluR7 kainate receptor subunit splice variants.
Kainate receptors (KARs) are heteromeric ionotropic glutamate receptors that play a variety of roles in the regulation of synaptic network activity. The function of glutamate receptors (GluRs) is highly dependent on their surface density in specific neuronal domains. Alternative splicing is known to regulate surface expression of GluR5 and GluR6 subunits. The KAR subunit GluR7 exists under diff...
متن کاملIdentification of amino acid residues within GABA(A) receptor beta subunits that mediate both homomeric and heteromeric receptor expression.
GABA(A) receptors are believed to be heteropentamers that can be constructed from six subunit classes: alpha(1-6), beta(1-4), gamma(1-3), delta, epsilon, and pi. Given that individual neurons often express multiple receptor subunits, it is important to understand how these receptors assemble. To determine which domains of receptor subunits control assembly, we have exploited the differing capab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 21 4 شماره
صفحات -
تاریخ انتشار 2001