Multi Dimensional ICA to Separate Correlated Sources
نویسندگان
چکیده
We present a new method for the blind separation of sources, which do not fulfill the independence assumption. In contrast to standard methods we consider groups of neighboring samples ("patches") within the observed mixtures. First we extract independent features from the observed patches. It turns out that the average dependencies between these features in different sources is in general lower than the dependencies between the amplitudes of different sources. We show that it might be the case that most of the dependencies is carried by only a small number of features. Is this case provided these features can be identified by some heuristic we project all patches into the subspace which is orthogonal to the subspace spanned by the "correlated" features. Standard ICA is then performed on the elements of the transformed patches (for which the independence assumption holds) and robustly yields a good estimate of the mixing matrix.
منابع مشابه
An Iterative Blind Source Separation Method for Convolutive Mixtures of Images
The paper deals with blind source separation of images. The model which is adopted here is a convolutive multi-dimensional one. Recent results about polynomial matrices in several indeterminates are used to prove the invertibility of the mixing process. We then extend an iterative blind source separation method to the multi-dimensional case and show that it still applies if the source spectra v...
متن کاملBlind Separation and Deconvolution for Real Convolutive Mixture of Temporally Correlated Acoustic Signals Using Simo-model-based Ica
We propose a new novel two-stage blind separation and deconvolution (BSD) algorithm for a real convolutive mixture of temporally correlated signals, in which a new Single-Input Multiple-Output (SIMO)-model-based ICA (SIMO-ICA) and blind multichannel inverse filtering are combined. SIMO-ICA consists of multiple ICAs and a fidelity controller, and each ICA runs in parallel under fidelity control ...
متن کاملBlind separation and deconvolution for convolutive mixture of speech using SIMO-model-based ICA and multichannel inverse filtering
We propose a new two-stage blind separation and deconvolution (BSD) algorithm for a convolutive mixture of speech, in which a new Single-Input Multiple-Output (SIMO)-modelbased ICA (SIMO-ICA) and blind multichannel inverse filtering are combined. SIMO-ICA can separate the mixed signals, not into monaural source signals but into SIMO-model-based signals from independent sources as they are at th...
متن کاملTitle : 1 Applicability of Independent Component Analysis on High - Density
31 Emerging CMOS-based, high-density microelectrode array (HD-MEA) devices provide high spatial resolution at subcellular 32 level and a large number of readout channels. These devices allow for simultaneous recording of extracellular activity of a 33 large number of neurons with every neuron being detected by multiple electrodes. In order to analyze the recorded signals, 34 spiking events have...
متن کاملIndependent component analysis for biomedical signals.
Independent component analysis (ICA) is increasing in popularity in the field of biomedical signal processing. It is generally used when it is required to separate measured multi-channel biomedical signals into their constituent underlying components. The use of ICA has been facilitated in part by the free availability of toolboxes that implement popular flavours of the techniques. Fundamentall...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001