Traffic Behavior Recognition Using the Pachinko Allocation Model
نویسندگان
چکیده
CCTV-based behavior recognition systems have gained considerable attention in recent years in the transportation surveillance domain for identifying unusual patterns, such as traffic jams, accidents, dangerous driving and other abnormal behaviors. In this paper, a novel approach for traffic behavior modeling is presented for video-based road surveillance. The proposed system combines the pachinko allocation model (PAM) and support vector machine (SVM) for a hierarchical representation and identification of traffic behavior. A background subtraction technique using Gaussian mixture models (GMMs) and an object tracking mechanism based on Kalman filters are utilized to firstly construct the object trajectories. Then, the sparse features comprising the locations and directions of the moving objects are modeled by PAMinto traffic topics, namely activities and behaviors. As a key innovation, PAM captures not only the correlation among the activities, but also among the behaviors based on the arbitrary directed acyclic graph (DAG). The SVM classifier is then utilized on top to train and recognize the traffic activity and behavior. The proposed model shows more flexibility and greater expressive power than the commonly-used latent Dirichlet allocation (LDA) approach, leading to a higher recognition accuracy in the behavior classification.
منابع مشابه
Nonparametric Bayes Pachinko Allocation
Recent advances in topic models have explored complicated structured distributions to represent topic correlation. For example, the pachinko allocation model (PAM) captures arbitrary, nested, and possibly sparse correlations between topics using a directed acyclic graph (DAG). While PAM provides more flexibility and greater expressive power than previous models like latent Dirichlet allocation ...
متن کاملPachinko Allocation: Scalable Mixture Models of Topic Correlations
Statistical topic models are increasingly popular tools for summarization and manifold discovery in discrete data. However, the majority of existing approaches capture no or limited correlations between topics. In this paper, we propose the pachinko allocation model (PAM), which captures arbitrary topic correlations using a directed acyclic graph (DAG). The leaves of the DAG represent individua...
متن کاملNovelty Detection via Topic Modeling in Research Articles
In today’s world redundancy is the most vital problem faced in almost all domains. Novelty detection is the identification of new or unknown data or signal that a machine learning system is not aware of during training. The problem becomes more intense when it comes to “Research Articles”. A method of identifying novelty at each sections of the article is highly required for determining the nov...
متن کاملCapturing correlations of multiple labels: A generative probabilistic model for multi-label learning
Recent years have witnessed a considerable surge of interest in the multi-label learning problem. It has been shown that a key factor for a successful multi-label learning algorithm is to effectively exploit relations between labels. However, most of the previous work exploiting label relations focuses on pairwise relations. To handle the situations where there are intrinsic correlations among ...
متن کاملA Continuous-Time Model of Topic Co-occurrence Trends
Recent work in statistical topic models has investigated richer structures to capture either temporal or inter-topic correlations. This paper introduces a topic model that combines the advantages of two recently proposed models: (1) The Pachinko Allocation model (PAM), which captures arbitrary topic correlations with a directed acyclic graph (DAG), and (2) the Topics over Time model (TOT), whic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 15 شماره
صفحات -
تاریخ انتشار 2015