Dictyostelium myosin IK is involved in the maintenance of cortical tension and affects motility and phagocytosis.

نویسندگان

  • E C Schwarz
  • E M Neuhaus
  • C Kistler
  • A W Henkel
  • T Soldati
چکیده

Dictyostelium discoideum myosin Ik (MyoK) is a novel type of myosin distinguished by a remarkable architecture. MyoK is related to class I myosins but lacks a cargo-binding tail domain and carries an insertion in a surface loop suggested to modulate motor velocity. This insertion shows similarity to a secondary actin-binding site present in the tail of some class I myosins, and indeed a GST-loop construct binds actin. Probably as a consequence, binding of MyoK to actin was not only ATP- but also salt-dependent. Moreover, as both binding sites reside within its motor domain and carry potential sites of regulation, MyoK might represent a new form of actin crosslinker. MyoK was distributed in the cytoplasm with a significant enrichment in dynamic regions of the cortex. Absence of MyoK resulted in a drop of cortical tension whereas overexpression led to significantly increased tension. Absence and overexpression of MyoK dramatically affected the cortical actin cytoskeleton and resulted in reduced initial rates of phagocytosis. Cells lacking MyoK showed excessive ruffling, mostly in the form of large lamellipodia, accompanied by a thicker basal actin cortex. At early stages of development, aggregation of myoK null cells was slowed due to reduced motility. Altogether, the data indicate a distinctive role for MyoK in the maintenance and dynamics of the cell cortex.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dictyostelium myosin-IE is a fast molecular motor involved in phagocytosis.

Class I myosins are single-headed motor proteins, implicated in various motile processes including organelle translocation, ion-channel gating, and cytoskeleton reorganization. Here we describe the cellular localization of myosin-IE and its role in the phagocytic uptake of solid particles and cells. A complete analysis of the kinetic and motor properties of Dictyostelium discoideum myosin-IE wa...

متن کامل

Phg2, a kinase involved in adhesion and focal site modeling in Dictyostelium.

The amoeba Dictyostelium is a simple genetic system for analyzing substrate adhesion, motility and phagocytosis. A new adhesion-defective mutant named phg2 was isolated in this system, and PHG2 encodes a novel serine/threonine kinase with a ras-binding domain. We compared the phenotype of phg2 null cells to other previously isolated adhesion mutants to evaluate the specific role of each gene pr...

متن کامل

Lamellipodial localization of Dictyostelium myosin heavy chain kinase A is mediated via F-actin binding by the coiled-coil domain.

Myosin heavy chain kinase A (MHCK A) modulates myosin II filament assembly in the amoeba Dictyostelium discoideum. MHCK A localization in vivo is dynamically regulated during chemotaxis, phagocytosis, and other polarized cell motility events, with preferential recruitment into anterior filamentous actin (F-actin)-rich structures. The current work reveals that an amino-terminal segment of MHCK A...

متن کامل

A mechanical function of myosin II in cell motility.

Myosin II mutant Dictyostelium amoebae crawl more slowly than wild-type cells. Thus, myosin II must contribute to amoeboid locomotion. We propose that contractile forces generated by myosin II help the cell's rear edge to detach from the substratum and retract, allowing the cell to continue forward. To test this hypothesis, we measured the speed of wild-type and myosin II null mutant Dictyostel...

متن کامل

Blebbistatin and blebbistatin-inactivated myosin II inhibit myosin II-independent processes in Dictyostelium.

Blebbistatin, a cell-permeable inhibitor of class-II myosins, was developed to provide a tool for studying the biologic roles of myosin II. Consistent with this use, we find that blebbistatin inhibits three myosin II-dependent processes in Dictyostelium (growth in suspension culture, capping of Con A receptors, and development to fruiting bodies) and does not inhibit growth on plates, which doe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cell science

دوره 113 ( Pt 4)  شماره 

صفحات  -

تاریخ انتشار 2000