HIF1A Reduces Acute Lung Injury by Optimizing Carbohydrate Metabolism in the Alveolar Epithelium
نویسندگان
چکیده
BACKGROUND While acute lung injury (ALI) contributes significantly to critical illness, it resolves spontaneously in many instances. The majority of patients experiencing ALI require mechanical ventilation. Therefore, we hypothesized that mechanical ventilation and concomitant stretch-exposure of pulmonary epithelia could activate endogenous pathways important in lung protection. METHODS AND FINDINGS To examine transcriptional responses during ALI, we exposed pulmonary epithelia to cyclic mechanical stretch conditions--an in vitro model resembling mechanical ventilation. A genome-wide screen revealed a transcriptional response similar to hypoxia signaling. Surprisingly, we found that stabilization of hypoxia-inducible factor 1A (HIF1A) during stretch conditions in vitro or during ventilator-induced ALI in vivo occurs under normoxic conditions. Extension of these findings identified a functional role for stretch-induced inhibition of succinate dehydrogenase (SDH) in mediating normoxic HIF1A stabilization, concomitant increases in glycolytic capacity, and improved tricarboxylic acid (TCA) cycle function. Pharmacologic studies with HIF activator or inhibitor treatment implicated HIF1A-stabilization in attenuating pulmonary edema and lung inflammation during ALI in vivo. Systematic deletion of HIF1A in the lungs, endothelia, myeloid cells, or pulmonary epithelia linked these findings to alveolar-epithelial HIF1A. In vivo analysis of ¹³C-glucose metabolites utilizing liquid-chromatography tandem mass-spectrometry demonstrated that increases in glycolytic capacity, improvement of mitochondrial respiration, and concomitant attenuation of lung inflammation during ALI were specific for alveolar-epithelial expressed HIF1A. CONCLUSIONS These studies reveal a surprising role for HIF1A in lung protection during ALI, where normoxic HIF1A stabilization and HIF-dependent control of alveolar-epithelial glucose metabolism function as an endogenous feedback loop to dampen lung inflammation.
منابع مشابه
Hypoxia signaling during acute lung injury.
Acute lung injury (ALI) is an inflammatory lung disease that manifests itself in patients as acute respiratory distress syndrome and thereby contributes significantly to the morbidity and mortality of patients experiencing critical illness. Even though it may seem counterintuitive, as the lungs are typically well-oxygenated organs, hypoxia signaling pathways have recently been implicated in the...
متن کاملThe use of alveolar epithelial type I cell-selective markers to investigate lung injury and repair.
Alveolar epithelial type I cells cover most of the internal surface area of the lungs. Ultrastructural studies demonstrate that alveolar epithelial type I cell damage is frequently observed in acute and chronic lung diseases. This article discusses the use of cell-selective proteins as markers for the investigation of injury and repair of the alveolar epithelium. The utility of proteins specifi...
متن کاملBench-to-bedside review: The role of the alveolar epithelium in the resolution of pulmonary edema in acute lung injury
Clearance of pulmonary edema fluid is accomplished by active ion transport, predominantly by the alveolar epithelium. Various ion pumps and channels on the surface of the alveolar epithelial cell generate an osmotic gradient across the epithelium, which in turn drives the movement of water out of the airspaces. Here, the mechanisms of alveolar ion and fluid clearance are reviewed. In addition, ...
متن کاملErythropoietin inhibits respiratory epithelial cell apoptosis in a model of acute lung injury.
Fas-mediated apoptosis of the alveolar epithelium is important in the pathogenesis of acute respiratory distress syndrome. Erythropoietin (EPO) has cytoprotective properties in other organ systems, and is relatively deficient in critical illness. This study investigates a potential role for EPO in reducing apoptosis in a model of acute lung injury. Apoptosis was induced in human alveolar epithe...
متن کاملGM-CSF receptor expression and signaling is decreased in lungs of ethanol-fed rats.
Alcohol abuse dramatically increases the risk of acute lung injury. In an experimental rat model of ethanol-mediated susceptibility to lung injury, recombinant granulocyte/macrophage colony-stimulating factor (GM-CSF) restored alveolar epithelial barrier function both in vitro and in vivo, even during acute endotoxemia. These findings suggested that the alveolar epithelium, which secretes GM-CS...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2013