Recursive Estimation of Dynamic Modular RBF Networks

نویسندگان

  • Visakan Kadirkamanathan
  • Maha Kadirkamanathan
چکیده

Maha Kadirkamanathan Dragon Systems UK Cheltenham GL52 4RW, UK [email protected] In this paper, recursive estimation algorithms for dynamic modular networks are developed. The models are based on Gaussian RBF networks and the gating network is considered in two stages: At first, it is simply a time-varying scalar and in the second, it is based on the state, as in the mixture of local experts scheme. The resulting algorithm uses Kalman filter estimation for the model estimation and the gating probability estimation. Both, 'hard' and 'soft' competition based estimation schemes are developed where in the former, the most probable network is adapted and in the latter all networks are adapted by appropriate weighting of the data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Predictive Controllers Using a Growing and Pruning RBF Neural Network

An adaptive version of growing and pruning RBF neural network has been used to predict the system output and implement Linear Model-Based Predictive Controller (LMPC) and Non-linear Model-based Predictive Controller (NMPC) strategies. A radial-basis neural network with growing and pruning capabilities is introduced to carry out on-line model identification.An Unscented Kal...

متن کامل

A Dual Structural Radial Basis Function Network for Recursive Function Estimation∗

We present a dual structural radial basis function (RBF) network for recursive function estimation. This network is a hybrid system which consists of two sub-RBF networks. One sub-network models the relationship between the current network output and the past ones, and the other one describes the relationship between the current network output and the inputs. We propose a new variant of extende...

متن کامل

Neural Filters: MLP VIS-A-VIS RBF Network

Filtering of signals is of primary importance in signal processing. The design of filters to perform signal estimation is a problem that freeze up in the design of communication systems, control systems, in geophysics & in many other applications & disciplines. Optimum filters are proposed for filtering. In this paper, neural networks have been trained to filter satisfactorily with specified MS...

متن کامل

Application of Two Methods of Artificial Neural Network MLP, RBF for Estimation of Wind of Sediments (Case Study: Korsya of Darab Plain)

The lack of sediment gauging stations in the process of wind erosion, caused of estimate of sediment be process of necessary and important. Artificial neural networks can be used as an efficient and effective of tool to estimate and simulate sediments. In this paper two model multi-layer perceptron neural networks and radial neural network was used to estimate the amount of sediment in Korsya o...

متن کامل

ESTIMATION OF INVERSE DYNAMIC BEHAVIOR OF MR DAMPERS USING ARTIFICIAL AND FUZZY-BASED NEURAL NETWORKS

In this paper the performance of Artificial Neural Networks (ANNs) and Adaptive Neuro- Fuzzy Inference Systems (ANFIS) in simulating the inverse dynamic behavior of Magneto- Rheological (MR) dampers is investigated. MR dampers are one of the most applicable methods in semi active control of seismic response of structures. Various mathematical models are introduced to simulate the dynamic behavi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995