A new statistical model for site-specific indoor radio propagation prediction based on geometric optics and geometric probability
نویسندگان
چکیده
The ray-tracing (RT) algorithm has been used for accurately predicting the site-specific radio propagation characteristics, in spite of its computational intensity. Statistical models, on the other hand, offers computational simplicity but low accuracy. In this paper, a new model is proposed for predicting the indoor radio propagation to achieve computational simplicity over the RT method and better accuracy than the statistical models. The new model is based on the statistical derivation of the ray-tracing operation, whose results are a number of paths between the transmitter and receiver, each path comprises a number of rays. The pattern and length of the rays in these paths are related to statistical parameters of the site-specific features of indoor environment, such as the floor plan geometry. A key equation is derived to relate the average path power to the site-specific parameters, which are: 1) mean free distance; 2) transmission coefficient; and 3) reflection coefficient. The equation of the average path power is then used to predict the received power in a typical indoor environment. To evaluate the accuracy of the new model in predicting the received power in a typical indoor environment, a comparison with RT results and with measurement data shows an error bound of less than 5 dB.
منابع مشابه
کاربرد روش معادله سهموی در تحلیل مسائل انتشار امواج داخل ساختمان
With the rapid growth of indoor wireless communication systems, the need to accurately model radio wave propagation inside the building environments has increased. Many site-specific methods have been proposed for modeling indoor radio channels. Among these methods, the ray tracing algorithm and the finite-difference time domain (FDTD) method are the most popular ones. The ray tracing approach ...
متن کاملPlanelet Transform: A New Geometrical Wavelet for Compression of Kinect-like Depth Images
With the advent of cheap indoor RGB-D sensors, proper representation of piecewise planar depth images is crucial toward an effective compression method. Although there exist geometrical wavelets for optimal representation of piecewise constant and piecewise linear images (i.e. wedgelets and platelets), an adaptation to piecewise linear fractional functions which correspond to depth variation ov...
متن کاملSpatio-temporal ultrawideband indoor propagation modelling by reduced complexity geometric optics
A simple and efficient virtual-source ray-tracing technique for the simulation of indoor wideband radio and optical propagation channels is proposed. The parametric deterministic model considers the room geometry, transceiver locations, material properties and probe signal types. It is applied to the indoor ultrawideband channel in the FCC-allocated 3.1–10.6 GHz band, and a range of novel resul...
متن کاملA Comparison between Kubelka-Munk and Geometric Models for Prediction of Reflectance Factor of Transparent Fibers
The reflectance factors of transparent fibers, free delustering agent, are predicted by geometric as well as Kubelka-Munk models. Transparent fibers are simulated by a net of glass capillary tubes containing different solutions of dyestuffs. Based on the results, prediction of the reflectance factor of capillary net by geometric model is relatively better than those obtained from Kubelka-Munk...
متن کاملGenerating an Indoor space routing graph using semantic-geometric method
The development of indoor Location-Based Services faces various challenges that one of which is the method of generating indoor routing graph. Due to the weaknesses of purely geometric methods for generating indoor routing graphs, a semantic-geometric method is proposed to cover the existing gaps in combining the semantic and geometric methods in this study. The proposed method uses the CityGML...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE Trans. Wireless Communications
دوره 1 شماره
صفحات -
تاریخ انتشار 2002