A Provably Secure PKCS#11 Configuration Without Authenticated Attributes
نویسنده
چکیده
Cryptographic APIs like PKCS#11 are interfaces to trusted hardware where keys are stored; the secret keys should never leave the trusted hardware in plaintext. In PKCS#11 it is possible to give keys conflicting roles, leading to a number of key-recovery attacks. To prevent these attacks, one can authenticate the attributes of keys when wrapping, but this is not standard in PKCS#11. Alternatively, one can configure PKCS#11 to place additional restrictions on the commands permitted by the API. Bortolozzo et al. proposed a configuration of PKCS#11, called the Secure Templates Patch (STP), supporting symmetric encryption and key wrapping. However, the security guarantees for STP given by Bortolozzo et al. are with respect to a weak attacker model. STP has been implemented as a set of filtering rules in Caml Crush, a software filter for PKCS#11 that rejects certain API calls. The filtering rules in Caml Crush extend STP by allowing users to compute and verify MACs and so the previous analysis of STP does not apply to this configuration. We give a rigorous analysis of STP, including the extension used in Caml Crush. Our contribution is as follows: (i) We show that the extension of STP used in Caml Crush is insecure. (ii) We propose a strong, computational security model for configurations of PKCS#11 where the adversary can adaptively corrupt keys and prove that STP is secure in this model. (iii) We prove the security of an extension of STP that adds support for public-key encryption and digital signatures.
منابع مشابه
Artemia: a family of provably secure authenticated encryption schemes
Authenticated encryption schemes establish both privacy and authenticity. This paper specifies a family of the dedicated authenticated encryption schemes, Artemia. It is an online nonce-based authenticated encryption scheme which supports the associated data. Artemia uses the permutation based mode, JHAE, that is provably secure in the ideal permutation model. The scheme does not require the in...
متن کامل(Password) Authenticated Key Establishment: From 2-Party to Group
A protocol compiler is described, that transforms any provably secure authenticated 2-party key establishment into a provably secure authenticated group key establishment with 2 more rounds of communication. The compiler introduces neither idealizing assumptions nor high-entropy secrets, e. g., for signing. In particular, applying the compiler to a password-authenticated 2-party key establishme...
متن کاملProvably secure and efficient identity-based key agreement protocol for independent PKGs using ECC
Key agreement protocols are essential for secure communications in open and distributed environments. Recently, identity-based key agreement protocols have been increasingly researched because of the simplicity of public key management. The basic idea behind an identity-based cryptosystem is that a public key is the identity (an arbitrary string) of a user, and the corresponding private key is ...
متن کاملA New Security Model for Cross-Realm C2C-PAKE Protocol
Cross realm client-to-client password authenticated key exchange (C2C-PAKE) schemes are designed to enable two clients in different realms to agree on a common session key using different passwords. In 2006, Yin-Bao presented the first provably secure cross-realm C2C-PAKE, which security is proven rigorously within a formally defined security model and based on the hardness of some computationa...
متن کاملComments on a Provably Secure Three-Party Password-Based Authenticated Key Exchange Protocol Using Weil Pairings
In 2005, Wen et al. proposed the first provably secure three-party password-based authenticated key exchange using Weil pairings, and provided their proof in a modified Bellare-Rogaway model (BR-model). Here, we show an impersonation attack on Wen et al.’s scheme and point out a main flaw of their model that allows a man-in-the-middle adversary easily violate the security.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017