A Maximum-Caliber Approach to Predicting Perturbed Folding Kinetics Due to Mutations.

نویسندگان

  • Hongbin Wan
  • Guangfeng Zhou
  • Vincent A Voelz
چکیده

We present a maximum-caliber method for inferring transition rates of a Markov state model (MSM) with perturbed equilibrium populations given estimates of state populations and rates for an unperturbed MSM. It is similar in spirit to previous approaches, but given the inclusion of prior information, it is more robust and simple to implement. We examine its performance in simple biased diffusion models of kinetics and then apply the method to predicting changes in folding rates for several highly nontrivial protein folding systems for which non-native interactions play a significant role, including (1) tryptophan variants of the GB1 hairpin, (2) salt-bridge mutations of the Fs peptide helix, and (3) MSMs built from ultralong folding trajectories of FiP35 and GTT variants of the WW domain. In all cases, the method correctly predicts changes in folding rates, suggesting the wide applicability of maximum-caliber approaches to efficiently predict how mutations perturb protein conformational dynamics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting Protein Folding Kinetics via Temporal Logic Model Checking: Extended Abstract

Christopher James Langmead and Sumit Kumar Jha Department of Computer Science, Carnegie Mellon University Abstract. We present a novel approach for predicting protein folding kinetics using techniques from the field of model checking. This represents the first time model checking has been applied to a problem in the field of structural biology. The protein’s energy landscape is encoded symbolic...

متن کامل

Resistance mechanism of human immunodeficiency virus type-1 protease to inhibitors: A molecular dynamic approach

Human immunodeficiency virus type 1 (HIV-1) protease inhibitors comprise an important class of drugs used in HIV treatments. However, mutations of protease genes accelerated by low fidelity of reverse transcriptase yield drug resistant mutants of reduced affinities for the inhibitors. This problem is considered to be a serious barrier against HIV treatment for the foreseeable future. In this st...

متن کامل

Predicting Protein Folding Kinetics Via Temporal Logic Model Checking

We present a novel approach for predicting protein folding kinetics using techniques from the field of model checking. This represents the first time model checking has been applied to a problem in the field of structural biology. The protein’s energy landscape is encoded symbolically using Binary Decision Diagrams and related data structures. Questions regarding the kinetics of folding are enc...

متن کامل

Predicting secondary structural folding kinetics for nucleic acids.

We report a new computational approach to the prediction of RNA secondary structure folding kinetics. In this approach, each elementary kinetic step is represented as the transformation between two secondary structures that differ by a helix. Based on the free energy landscape analysis, we identify three types of dominant pathways and the rate constants for the kinetic steps: 1), formation; 2),...

متن کامل

Effects of Dimethyl Sulfoxide and Mutations on the Folding of Abeta(25-35) Peptide: Molecular Dynamics Simulations

The 25-35 fragment of the amyloid β (Aβ) peptide is a naturally occurring proteolytic by-product of its larger parent molecule that retains the amyloid characteristics and toxicity of the full length parent molecule. Aggregation of this peptide occurs rapidly in aqueous solutions and thus characterization of its folding process is very difficult. In the present study, early stages of Aβ(25–35) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of chemical theory and computation

دوره 12 12  شماره 

صفحات  -

تاریخ انتشار 2016