Spontaneously formed porous and composite materials

نویسندگان

  • Serena A. Corr
  • Daniel P. Shoemaker
  • Eric S. Toberer
  • Ram Seshadri
چکیده

FEATURE ARTICLE Serena A. Corr et al. Spontaneously formed porous and composite materials PAPER Dan Du et al. One-step electrochemical deposition of Prussian Blue–multiwalled carbon nanotube nanocomposite thin film In recent years, a number of routes to porous materials have been developed which do not involve the use of pre-formed templates or structure-directing agents. These routes are usually spontaneous, meaning they are thermodynamically downhill. Kinetic control, deriving from slow diffusion of certain species in the solid state, allows metastable porous morphologies rather than dense materials to be obtained. While the porous structures so formed are random, the average architectural features can be well-defined, and the porosity is usually highly interconnected. The routes are applicable to a broad range of functional inorganic materials. Consequently, the porous architectures have uses in energy transduction and storage, chemical sensing, catalysis, and photoelectrochemistry. This is in addition to more straightforward uses deriving from the pore structure, such as in filtration, as a structural material, or as a cell-growth scaffold. In this feature article, some of the methods for the creation of porous materials are described, including shape-conserving routes that lead to hierarchical macro/ mesoporous architectures. In some of the preparations, the resulting mesopores are aligned locally with certain crystallographic directions. The coupling between morphology and crystallography provides a macroscopic handle on nanoscale structure. Extension of these routes to create biphasic composite materials are also described.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sponge-like porous carbon/tin composite anode materials for lithium ion batteries

A novel sponge-like porous C/Sn composite is synthesized by dispersing SnO2 nanoparticles into a softtemplate polymer matrix followed by carbonization. The mesoporous C/Sn anodes can deliver a capacity as high as 1300mAh g 1 after 450 charge/discharge cycles, and provide a capacity of 180mAh g 1 even at 4000 mA g 1 charge/discharge current density. An extra reversible capacity over the theoreti...

متن کامل

Fracture Mechanism of CoCrMo Porous Nano-composite Prepared by Powder Metallurgy Route

The main aim of this research was to find the mechanism for the failure of the CoCrMo porous nano-composite by characterizing microstructural changes and fractured surface after compression test. For this purpose, porous nano-composites were prepared with the addition of bioactive glass nano-powder to Co-base alloy with 22.5% porosity by the combination of space-holder and powder metallurgy tec...

متن کامل

Novel polymer-synthesized ceramic composite-based system for bone repair: an in vitro evaluation.

The emergence of synthetic bone repair scaffolds has been necessitated by the limitations of both autografts and allografts. Several candidate materials are available including degradable polymers and ceramics. However, these materials possess their own limitations that at least in part may be overcome by combining the two materials into a composite. Toward that end, a novel approach to forming...

متن کامل

First Introduction of NiSe2 to Anode Material for Sodium-Ion Batteries: A Hybrid of Graphene-Wrapped NiSe2/C Porous Nanofiber

The first-ever study of nickel selenide materials as efficient anode materials for Na-ion rechargeable batteries is conducted using the electrospinning process. NiSe2-reduced graphene oxide (rGO)-C composite nanofibers are successfully prepared via electrospinning and a subsequent selenization process. The electrospun nanofibers giving rise to these porous-structured composite nanofibers with o...

متن کامل

One-Pot Route towards Active TiO₂ Doped Hierarchically Porous Cellulose: Highly Efficient Photocatalysts for Methylene Blue Degradation.

In this study, novel photocatalyst monolith materials were successfully fabricated by a non-solvent induced phase separation (NIPS) technique. By adding a certain amount of ethyl acetate (as non-solvent) into a cellulose/LiCl/N,N-dimethylacetamide (DMAc) solution, and successively adding titanium dioxide (TiO₂) nanoparticles (NPs), cellulose/TiO₂ composite monoliths with hierarchically porous s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010