An Automatic Classification of Brain Tumors through MRI Using Support Vector Machine

نویسندگان

  • Marco Alfonse
  • Abdel-Badeeh M. Salem
چکیده

Brain tumor is a life threatening disease. It is any mass that outcomes from abnormal growths of cells in the brain. In this paper a brain tumor diagnostic system is developed. The system determines the type of the tumor which is benign or malignant using the Magnetic Resonance Imaging (MRI) images which are in the Digital Imaging and Communications in Medicine (DICOM) standard format. The system is assessed based on a series of brain tumor images. Experimental results demonstrate that the proposed system has a classification accuracy of 98.9%.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MULTI CLASS BRAIN TUMOR CLASSIFICATION OF MRI IMAGES USING HYBRID STRUCTURE DESCRIPTOR AND FUZZY LOGIC BASED RBF KERNEL SVM

Medical Image segmentation is to partition the image into a set of regions that are visually obvious and consistent with respect to some properties such as gray level, texture or color. Brain tumor classification is an imperative and difficult task in cancer radiotherapy. The objective of this research is to examine the use of pattern classification methods for distinguishing different types of...

متن کامل

Detection of Glioblastoma Multiforme Tumor in Magnetic Resonance Spectroscopy Based on Support Vector Machine

Introduction: The brain tumor is an abnormal growth of tissue in the brain, which is one of the most important challenges in neurology. Brain tumors have different types. Some brain tumors are benign and some brain tumors are cancerous and malignant. Glioblastoma Multiforme (GBM) is the most common and deadliest malignant brain tumor in adults. The average survival rate for peo...

متن کامل

Automatic Brain Tumors Segmentation of MR Images using Fluid Vector Flow and Support Vector Machine

Manual segmentation of brain tumors by medical practitioners is a time consuming task and has inability to assist in accurate diagnosis. Several automatic methods have been developed to overcome these issues. But Automatic MRI (Magnetic Resonance Imaging) brain tumor segmentation is a complicated task due to the variance and intricacy of tumors; to over by this problem we have developed a new m...

متن کامل

An Efficient Framework for Accurate Arterial Input Selection in DSC-MRI of Glioma Brain Tumors

Introduction: Automatic arterial input function (AIF) selection has an essential role in quantification of cerebral perfusion parameters. The purpose of this study is to develop an optimal automatic method for AIF determination in dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) of glioma brain tumors by using a new preprocessing method.Material and Methods: For this study, ...

متن کامل

Multiple Sclerosis Lesions Segmentation in Magnetic Resonance Imaging using Ensemble Support Vector Machine (ESVM)

Background: Multiple Sclerosis (MS) syndrome is a type of Immune-Mediated disorder in the central nervous system (CNS) which destroys myelin sheaths, and results in plaque (lesion) formation in the brain. From the clinical point of view, investigating and monitoring information such as position, volume, number, and changes of these plaques are integral parts of the controlling process this dise...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016