Invertible and Nilpotent Matrices over Antirings

نویسندگان

  • DAVID DOLŽAN
  • POLONA OBLAK
چکیده

Abstract. In this paper we characterize invertible matrices over an arbitrary commutative antiring S with 1 and find the structure of GLn(S). We find the number of nilpotent matrices over an entire commutative finite antiring. We prove that every nilpotent n×n matrix over an entire antiring can be written as a sum of ⌈log2 n⌉ square-zero matrices and also find the necessary number of square-zero summands for an arbitrary trace-zero matrix to be expressible as their sum.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the nil-clean matrix over a UFD

 In this paper we characterize all $2times 2$ idempotent and nilpotent matrices over an integral domain and then we characterize all $2times 2$ strongly nil-clean matrices over a PID. Also, we determine when a $2times 2$ matrix  over a UFD is nil-clean.

متن کامل

On nilpotency of matrices over antirings

Article history: Received 13 May 2010 Accepted 1 June 2010 Available online 4 July 2010 Submitted by R.A. Brualdi AMS classification: 15A15 15A18

متن کامل

8 B - Orbits of Nilpotent Order 2 and Link Patterns Anna

Abstract. Let Bn be the group of upper-triangular invertible n×n matrices and Xn be the variety of strictly upper triangular n × n matrices of nilpotent order 2. Bn acts on Xn by conjugation. In this paper we describe geometry of orbits Xn/Bn in terms of link patterns. Further we apply this description to the computations of the closures of orbital varieties of nilpotent order 2 and intersectio...

متن کامل

Description of B−orbit Closures of Order 2 in Upper-triangular Matrices

Abstract. Let nn(C) be the algebra of strictly upper-triangular n × n matrices and X2 = {u ∈ nn(C) : u2 = 0} the subset of matrices of nilpotent order 2. Let Bn(C) be the group of invertible upper-triangular matrices acting on nn by conjugation. Let Bu be the orbit of u ∈ X2 with respect to this action. Let S2n be the subset of involutions in the symmetric group Sn. We define a new partial orde...

متن کامل

Enhancing the Jordan canonical form

The Jordan canonical form parametrises similarity classes in the nilpotent cone Nn, consisting of n× n nilpotent complex matrices, by partitions of n. Achar and Henderson (2008) extended this and other well-known results about Nn to the case of the enhanced nilpotent cone C ×Nn. 1. Jordan canonical form The Jordan canonical form (JCF), introduced in 1870 [10], is one of the most useful tools in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008