Adaptively Secure Identity-Based Identification from Lattices without Random Oracles
نویسنده
چکیده
We propose a concurrently secure, identity-based identification scheme from lattices. It offers adaptive-identity security in the standard model, quasi optimal online performance, optimal leakage resilience, and its security is based on mild worst-case assumptions in ideal lattices. Our scheme uses an ideal-lattice interpretation of the Bonsai tree concept in lattices (EUROCRYPT 2010), which we call convoluted Bonsai trees. It allows us to build an identity-based identification scheme in a new “static identity” model that is weaker than the standard “adaptive identity” model. We show that both models are equivalent under the existence of Chameleon hash functions.
منابع مشابه
Efficient Selective-ID Secure Identity-Based Encryption Without Random Oracles
We construct two efficient Identity Based Encryption (IBE) systems that are selective identity secure without the random oracle model in groups equipped with a bilinear map. Selective identity secure IBE is a slightly weaker security model than the standard security model for IBE. In this model the adversary must commit ahead of time to the identity that it intends to attack, whereas in the sta...
متن کاملHow to Delegate a Lattice Basis
We present a technique, which we call basis delegation, that allows one to use a short basis of a given lattice to derive a new short basis of a related lattice in a secure way. And since short bases for lattices essentially function like cryptographic trapdoors, basis delegation turns out to be a very powerful primitive. As the main application of our technique, we show how to construct hierar...
متن کاملIdentity-Based Encryption from Lattices in the Standard Model
We construct an Identity-Based Encryption (IBE) system without random oracles from hard problems on random integer lattices. The system is anonymous, with pseudo-random ciphertexts.
متن کاملEfficient Identity-Based Encryption Without Random Oracles
We present the first efficient Identity-Based Encryption (IBE) scheme that is fully secure without random oracles. We first present our IBE construction and reduce the security of our scheme to the decisional Bilinear Diffie-Hellman (BDH) problem. Additionally, we show that our techniques can be used to build a new signature scheme that is secure under the computational Diffie-Hellman assumptio...
متن کاملIdentity-Based Encryption Secure against Selective Opening Chosen-Ciphertext Attack
Security against selective opening attack (SOA) requires that in a multi-user setting, even if an adversary has access to all ciphertexts from users, and adaptively corrupts some fraction of the users by exposing not only their messages but also the random coins, the remaining unopened messages retain their privacy. Recently, Bellare, Waters and Yilek considered SOA-security in the identity-bas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010