The uniqueness and well-posedness of vector equilibrium problems with a representation theorem for the solution set

نویسندگان

  • Ding-Tao Peng
  • Jian Yu
  • Nai-Hua Xiu
چکیده

This paper aims to present some uniqueness and well-posedness results for vector equilibrium problems (for short, VEPs). We first construct a complete metric spaceM consisting of VEPs satisfying some conditions. Using the method of set-valued analysis, we prove that there exists a dense everywhere residual subset Q ofM such that each VEP in Q has a unique solution. Moreover, we introduce and obtain the generalized Hadamard well-posedness and generic Hadamard well-posedness of VEPs by considering the perturbations of both vector-valued functions and feasible sets. As an application, we provide a representation theorem for the solution set to each VEP inM. MSC: 49K40; 90C31; 46B40; 47H04

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence and uniqueness of the solution for a general system of operator equations in $b-$metric spaces endowed with a graph

The purpose of this paper is to present some coupled fixed point results on a metric space endowed with two $b$-metrics. We shall apply a fixed point theorem for an appropriate operator on the Cartesian product of the given spaces endowed with directed graphs. Data dependence, well-posedness and Ulam-Hyers stability are also studied. The results obtained here will be applied to prove the existe...

متن کامل

Lower semicontinuity for parametric set-valued vector equilibrium-like problems

A concept of weak $f$-property for a set-valued mapping is introduced‎, ‎and then under some suitable assumptions‎, ‎which do not involve any information‎ ‎about the solution set‎, ‎the lower semicontinuity of the solution mapping to‎ ‎the parametric‎ ‎set-valued vector equilibrium-like problems are derived by using a density result and scalarization method‎, ‎where the‎ ‎constraint set $K$...

متن کامل

Strong convergence of a general implicit algorithm for variational inequality problems and equilibrium problems and a continuous representation of nonexpansive mappings

We introduce a general implicit algorithm for finding a common element of‎ ‎the set of solutions of systems of equilibrium problems and the set of common fixed points‎ ‎of a sequence of nonexpansive mappings and a continuous representation of nonexpansive mappings‎. ‎Then we prove the strong convergence of the proposed implicit scheme to the unique solution of the minimization problem on the so...

متن کامل

The uniqueness theorem for inverse nodal problems with a chemical potential

In this paper, an inverse nodal problem for a second-order differential equation having a chemical potential on a finite interval is investigated. First, we estimate the nodal points and nodal lengths of differential operator. Then, we show that the potential can be uniquely determined by a dense set of nodes of the eigenfunctions.

متن کامل

Existence and Hadamard well-posedness of a system of simultaneous generalized vector quasi-equilibrium problems

An existence result for the solution set of a system of simultaneous generalized vector quasi-equilibrium problems (for short, (SSGVQEP)) is obtained, which improves Theorem 3.1 of the work of Ansari et al. (J. Optim. Theory Appl. 127:27-44, 2005). Moreover, a definition of Hadamard-type well-posedness for (SSGVQEP) is introduced and sufficient conditions for Hadamard well-posedness of (SSGVQEP...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014