Improving sensitivity of machine learning methods for automated case identification from free-text electronic medical records
نویسندگان
چکیده
BACKGROUND Distinguishing cases from non-cases in free-text electronic medical records is an important initial step in observational epidemiological studies, but manual record validation is time-consuming and cumbersome. We compared different approaches to develop an automatic case identification system with high sensitivity to assist manual annotators. METHODS We used four different machine-learning algorithms to build case identification systems for two data sets, one comprising hepatobiliary disease patients, the other acute renal failure patients. To improve the sensitivity of the systems, we varied the imbalance ratio between positive cases and negative cases using under- and over-sampling techniques, and applied cost-sensitive learning with various misclassification costs. RESULTS For the hepatobiliary data set, we obtained a high sensitivity of 0.95 (on a par with manual annotators, as compared to 0.91 for a baseline classifier) with specificity 0.56. For the acute renal failure data set, sensitivity increased from 0.69 to 0.89, with specificity 0.59. Performance differences between the various machine-learning algorithms were not large. Classifiers performed best when trained on data sets with imbalance ratio below 10. CONCLUSIONS We were able to achieve high sensitivity with moderate specificity for automatic case identification on two data sets of electronic medical records. Such a high-sensitive case identification system can be used as a pre-filter to significantly reduce the burden of manual record validation.
منابع مشابه
Extracting information from the text of electronic medical records to improve case detection: a systematic review
BACKGROUND Electronic medical records (EMRs) are revolutionizing health-related research. One key issue for study quality is the accurate identification of patients with the condition of interest. Information in EMRs can be entered as structured codes or unstructured free text. The majority of research studies have used only coded parts of EMRs for case-detection, which may bias findings, miss ...
متن کاملAutomated outcome classification of emergency department computed tomography imaging reports.
BACKGROUND Reliably abstracting outcomes from free-text electronic health records remains a challenge. While automated classification of free text has been a popular medical informatics topic, performance validation using real-world clinical data has been limited. The two main approaches are linguistic (natural language processing [NLP]) and statistical (machine learning). The authors have deve...
متن کاملToward Automated Early Sepsis Alerting: Identifying Infection Patients from Nursing Notes
Severe sepsis and septic shock are conditions that affect millions of patients and have close to 50% mortality rate. Early identification of at-risk patients significantly improves outcomes. Electronic surveillance tools have been developed to monitor structured Electronic Medical Records and automatically recognize early signs of sepsis. However, many sepsis risk factors (e.g. symptoms and sig...
متن کاملDe-identification of primary care electronic medical records free-text data in Ontario, Canada
BACKGROUND Electronic medical records (EMRs) represent a potentially rich source of health information for research but the free-text in EMRs often contains identifying information. While de-identification tools have been developed for free-text, none have been developed or tested for the full range of primary care EMR data METHODS We used deid open source de-identification software and modif...
متن کاملAutomated identification of medical concepts and assertions in medical text.
This paper describes a machine learning, text processing approach that allows the extraction of key medical information from unstructured text in Electronic Medical Records. The approach utilizes a novel text representation that shares the simplicity of the widely used bag-of-words representation, but can also represent some form of semantic information in the text. The large dimensionality of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2013