Cluster tilting objects in generalized higher cluster categories
نویسنده
چکیده
We prove the existence of an m-cluster tilting object in a generalized m-cluster category which is (m+1)-Calabi–Yau andHom-finite, arising froman (m+2)-Calabi–Yau dg algebra. This is a generalization of the result for them = 1 case in Amiot’s Ph.D. thesis. Our results apply in particular to higher cluster categories associated to Ginzburg dg categories coming from suitable graded quivers with superpotential, and higher cluster categories associated to suitable finite-dimensional algebras of finite global dimension. © 2010 Elsevier B.V. All rights reserved.
منابع مشابه
AN INTRODUCTION TO HIGHER CLUSTER CATEGORIES
In this survey, we give an overview over some aspects of the set of tilting objects in an $m-$cluster category, with focus on those properties which are valid for all $m geq 1$. We focus on the following three combinatorial aspects: modeling the set of tilting objects using arcs in certain polygons, the generalized assicahedra of Fomin and Reading, and colored quiver mutation.
متن کاملAlmost Complete Cluster Tilting Objects in Generalized Higher Cluster Categories
We study higher cluster tilting objects in generalized higher cluster categories arising from dg algebras of higher Calabi-Yau dimension. Taking advantage of silting mutations of Aihara-Iyama, we obtain a class of m-cluster tilting objects in generalized m-cluster categories. For generalized m-cluster categories arising from strongly (m + 2)-Calabi-Yau dg algebras, by using truncations of minim...
متن کاملTo my dearest parents and to
This thesis is concerned with higher cluster tilting objects in generalized higher cluster categories and tropical friezes associated with Dynkin diagrams. The generalized cluster category arising from a suitable 3-Calabi-Yau differential graded algebra was introduced by C. Amiot. It is Hom-finite, 2-Calabi-Yau and admits a canonical cluster-tilting object. In this thesis, we extend these resul...
متن کاملCluster-tilted algebras and their intermediate coverings
We construct the intermediate coverings of cluster-tilted algebras by defining the generalized cluster categories. These generalized cluster categories are Calabi-Yau triangulated categories with fraction CY-dimension and have also cluster tilting objects (subcategories). Furthermore we study the representations of these intermediate coverings of cluster-tilted algebras.
متن کاملEquivalences between cluster categories
Tilting theory in cluster categories of hereditary algebras has been developed in [BMRRT] and [BMR]. These results are generalized to cluster categories of hereditary abelian categories. Furthermore, for any tilting object T in a hereditary abelian category H, we verify that the tilting functor HomH(T,−) induces a triangle equivalence from the cluster category C(H) to the cluster category C(A),...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011