Algebraic Distance Graphs and Rigidity
نویسندگان
چکیده
An algebraic distance graph is defined to be a graph with vertices in En in which two vertices are adjacent if and only if the distance between them is an algebraic number. It is proved that an algebraic distance graph with finite vertex set is complete if and only if the graph is "rigid". Applying this result, we prove that ( 1 ) if all the sides of a convex polygon T which is inscribed in a circle are algebraic numbers, then the circumradius and all diagonals of Y are also algebraic numbers, (2) the chromatic number of the algebraic distance graph on a circle of radius r is oo or 2 accordingly as r is algebraic or not. We also prove that for any n > 0, there exists a graph G which cannot be represented as an algebraic distance graph in En .
منابع مشابه
D-Spectrum and D-Energy of Complements of Iterated Line Graphs of Regular Graphs
The D-eigenvalues {µ1,…,µp} of a graph G are the eigenvalues of its distance matrix D and form its D-spectrum. The D-energy, ED(G) of G is given by ED (G) =∑i=1p |µi|. Two non cospectral graphs with respect to D are said to be D-equi energetic if they have the same D-energy. In this paper we show that if G is an r-regular graph on p vertices with 2r ≤ p - 1, then the complements of iterated lin...
متن کاملA CHARACTERIZATION FOR METRIC TWO-DIMENSIONAL GRAPHS AND THEIR ENUMERATION
The textit{metric dimension} of a connected graph $G$ is the minimum number of vertices in a subset $B$ of $G$ such that all other vertices are uniquely determined by their distances to the vertices in $B$. In this case, $B$ is called a textit{metric basis} for $G$. The textit{basic distance} of a metric two dimensional graph $G$ is the distance between the elements of $B$. Givi...
متن کاملSome Algebraic and Combinatorial Properties of the Complete $T$-Partite Graphs
In this paper, we characterize the shellable complete $t$-partite graphs. We also show for these types of graphs the concepts vertex decomposable, shellable and sequentially Cohen-Macaulay are equivalent. Furthermore, we give a combinatorial condition for the Cohen-Macaulay complete $t$-partite graphs.
متن کاملCOSPECTRALITY MEASURES OF GRAPHS WITH AT MOST SIX VERTICES
Cospectrality of two graphs measures the differences between the ordered spectrum of these graphs in various ways. Actually, the origin of this concept came back to Richard Brualdi's problems that are proposed in cite{braldi}: Let $G_n$ and $G'_n$ be two nonisomorphic simple graphs on $n$ vertices with spectra$$lambda_1 geq lambda_2 geq cdots geq lambda_n ;;;text{and};;; lambda'_1 geq lambda'_2...
متن کاملA Tractable, Approximate, Combinatorial 3D rigidity characterization
There is no known, tractable, characterization of 3D rigidity of sets of points constrained by pairwise distances or 3D distance constraint graphs. We give a combinatorial approximate characterization of such graphs which we call module-rigidity, which can be determined by a polynomial time algorithm. We show that this property is natural and robust in a formal sense. Rigidity implies module-ri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010