A Note on Metric Inhomogeneous Diophantine Approximation
نویسنده
چکیده
An inhomogeneous version of a general form of the Jarn k-Besicovitch Theorem is proved. Dedicated to Professor F. Chong for his 80th birthday 1. Introduction In some respects, inhomogeneous Diophantine approximation is rather diierent from homogeneous Diophantine approximation. Results in the former, where the additional variables ooer extràdegrees of freedom', are sometimes sharper or easier to prove than the corresponding ones in the latter. For example, if the real numbers x; do not satisfy = kx + l for any integers k; l, then
منابع مشابه
An Inhomogeneous Jarník Type Theorem for Planar Curves
In metric Diophantine approximation there are two main types of approximations: simultaneous and dual for both homogeneous and inhomogeneous settings. The well known measure-theoretic theorems of Khintchine and Jarník are fundamental in these settings. Recently, there has been substantial progress towards establishing a metric theory of Diophantine approximations on manifolds. In particular, bo...
متن کاملA higher-dimensional Kurzweil theorem for formal Laurent series over finite fields
In a recent paper, Kim and Nakada proved an analogue of Kurzweil’s theorem for inhomogeneous Diophantine approximation of formal Laurent series over finite fields. Their proof used continued fraction theory and thus cannot be easily extended to simultaneous Diophantine approximation. In this note, we give another proof which works for simultaneous Diophantine approximation as well.
متن کاملQuantitative Nondivergence and Its Diophantine Applications
The main goal of these notes is to describe a proof of quantitative nondivergence estimates for quasi-polynomial trajectories on the space of lattices, and show how estimates of this kind are applied to some problems in metric Diophantine approximation.
متن کاملOn Exponents of Homogeneous and Inhomogeneous Diophantine Approximation
In Diophantine Approximation, inhomogeneous problems are linked with homogeneous ones by means of the so-called Transference Theorems. We revisit this classical topic by introducing new exponents of Diophantine approximation. We prove that the inhomogeneous exponent of approximation to a generic point in R by a system of n linear forms is equal to the inverse of the uniform homogeneous exponent...
متن کاملInhomogeneous theory of dual Diophantine approximation on manifolds Dedicated to Bob Vaughan on his 65th birthday
The theory of inhomogeneous Diophantine approximation on manifolds is developed. In particular, the notion of nice manifolds is introduced and the divergence part of the Groshev type theory is established for all such manifolds. Our results naturally incorporate and generalize the homogeneous measure and dimension theorems for non-degenerate manifolds established to date. The results have natur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007