Geometric Structures on the Cochains of a Manifold

نویسنده

  • SCOTT O. WILSON
چکیده

In this paper we develop several algebraic structures on the simplicial cochains of a triangulated manifold that are analogues of objects in differential geometry. We study a cochain product and prove several statements about its convergence to the wedge product on differential forms. Also, for cochains with an inner product, we define a combinatorial Hodge star operator, and describe some applications, including a combinatorial period matrix for surfaces. We show that for a particularly nice cochain inner product, these combinatorial structures converge to their continuum analogues as the mesh of a triangulation tends to zero.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Algebra and Geometry of a Manifold’s Chains and Cochains

of the Dissertation On the Algebra and Geometry of a Manifold’s Chains and Cochains by Scott Owen Wilson Doctor of Philosophy in Mathematics Stony Brook University 2005 This dissertation consists of two parts, each of which describes new algebraic and geometric structures defined on chain complexes associated to a manifold. In the first part we define, on the simplicial cochains of a triangulat...

متن کامل

Cochain Algebra on Manifolds and Convergence under Refinement

In this paper we develop several algebraic structures on the simplicial cochains of a triangulated manifold and prove they converge to their differential-geometric analogues as the triangulation becomes small. The first such result is for a cochain cup product converging to the wedge product on differential forms. Moreover, we show any extension of this product to a C∞algebra also converges to ...

متن کامل

Einstein structures on four-dimensional nutral Lie groups

When Einstein was thinking about the theory of general relativity based on the elimination of especial relativity constraints (especially the geometric relationship of space and time), he understood the first limitation of especial relativity is ignoring changes over time. Because in especial relativity, only the curvature of the space was considered. Therefore, tensor calculations should be to...

متن کامل

Evolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow

Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...

متن کامل

Real Homology Cohomology and Harmonic Cochains, Least Squares, and Diagonal Dominance

We give new algorithms for computing basis cochains for real-valued homology, cohomology, and harmonic cochains on manifold simplicial complexes. We discuss only planar, surface, and solid meshes. Our algorithms are based on a least squares formulation. Previous methods for computing homology and cohomology have relied on persistence algorithm or Smith normal form, both of which have cubic comp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005