9 Alexandrov Embedded Closed Magnetic Geodesics on S 2

نویسنده

  • MATTHIAS SCHNEIDER
چکیده

We prove the existence of Alexandrov embedded closed magnetic geodesics on any two dimensional sphere with nonnegative Gauß curvature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

M ay 2 00 9 CLOSED MAGNETIC GEODESICS ON S 2

We give existence results for simple closed curves with prescribed geodesic curvature on S, which correspond to periodic orbits of a charge in a magnetic field.

متن کامل

S ep 2 00 3 CLOSED GEODESICS ON INCOMPLETE SURFACES

We consider the problem of finding embedded closed geodesics on the two-sphere with an incomplete metric defined outside a point. Various techniques including curve shortening methods are used.

متن کامل

Closed Magnetic Geodesics on S 2

We give existence results for simple closed curves with prescribed geodesic curvature on S, which correspond to periodic orbits of a charge in a magnetic field.

متن کامل

On the average indices of closed geodesics on positively curved Finsler spheres

In this paper, we prove that on every Finsler n-sphere (S, F ) for n ≥ 6 with reversibility λ and flag curvature K satisfying ( λ λ+1 )2 < K ≤ 1, either there exist infinitely many prime closed geodesics or there exist [ 2 ] − 2 closed geodesics possessing irrational average indices. If in addition the metric is bumpy, then there exist n − 3 closed geodesics possessing irrational average indice...

متن کامل

The Variance of Arithmetic Measures Associated to Closed Geodesics on the Modular Surfaces

Contents 1. Introduction 2 1.1. Equidistribution theorems for closed geodesics 2 1.2. The modular surface 3 1.3. Results 5 1.4. Remarks 7 1.5. Plan of the paper 9 1.6. Acknowledgments 9 2. Background on periods 9 2.1. The upper half-plane and its unit tangent bundle 9 2.2. Quotients 11 2.3. A correspondence with binary quadratic forms 12 2.4.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009