An effective procedure for sensor variable selection and utilization in plasma etching for semiconductor manufacturing

نویسندگان

  • Kye Hyun Baek
  • Thomas F. Edgar
  • Kiwook Song
  • Gilheyun Choi
  • Han Ku Cho
  • Chonghun Han
چکیده

Plasma etching processes have a potentially large number of sensor variables to be utilized, and the number of the sensor variables is growing due to advances in real-time sensors. In addition, the sensor variables from plasma sensors require additional knowledge about plasmas, which becomes a big burden for engineers to utilize them in this filed. Thus an effective procedure for sensor variable selection with minimum plasma knowledge is needed to develop in plasma etching. The integrated squared response (ISR) based sensor variable selection method which facilitates collecting and analyzing sensor data at one time with regard to manipulated variables (MVs) is suggested in this paper. The reference sensor library as well as sensor ranking tables constructed on the basis of ISR can give insight into plasma sensors. ntegrated squared response lasma etching ultivariable control irtual metrology elative gain array The ISR based sensor variable selection method is incorporated with relative gain array (RGA) or nonsquare relative gain array (NRGA) for effective variable selection in building a virtual metrology (VM) system to predict critical dimension (CD) in plasma etching. The application of the technique introduced in this paper is shown to be effective in the CD prediction in plasma etching for a dynamic random access memory (DRAM) manufacturing. The procedure for sensor variable selection introduced in this paper can be a starting point for various sensor-related applications in semiconductor manufacturing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Virtual Sensor Based Fault Detection and Classification on a Plasma Etch Reactor

The SEMATECH sponsored J-88-E project teaming Texas Instruments with NeuroDyne (et al) focused on Fault Detection and Classification (FDC) on a Lam 9600 aluminum plasma etch reactor, used in the process of semiconductor fabrication. Fault classification was accomplished by implementing a series of virtual sensor models which used data from real sensors (Lam Station sensors, Optical Emission Spe...

متن کامل

Statistical Methods for Enhanced Metrology in Semiconductor/Photovoltaic Manufacturing

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission....

متن کامل

Tip sensor probe for changing refractive index measurement in small volumes

In this paper, a tapered tip optical fiber probe sensor for localized refractive index (RI) measurements is presented. This sensor’s interaction with analytes is confined to a few micro-meters which makes it a promising candidate for in-vivo or even intra-cellular RI monitoring. This tapered tip was simply fabricated by etching optical fiber with hydrofluoric acid to a conic shape with a sub-m...

متن کامل

Dimension Reduction of Multivariable Optical Emission Spectrometer Datasets for Industrial Plasma Processes

A new data dimension-reduction method, called Internal Information Redundancy Reduction (IIRR), is proposed for application to Optical Emission Spectroscopy (OES) datasets obtained from industrial plasma processes. For example in a semiconductor manufacturing environment, real-time spectral emission data is potentially very useful for inferring information about critical process parameters such...

متن کامل

An Integrated Decision Making Model for Manufacturing Cell Formation and Supplier Selection

Optimization of the complete manufacturing and supply process has become a critical ingredient for gaining a competitive advantage. This article provides a unified mathematical framework for modeling manufacturing cell configuration and raw material supplier selection in a two-level supply chain network. The commonly used manufacturing design parameters along with supplier selection and a subco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computers & Chemical Engineering

دوره 61  شماره 

صفحات  -

تاریخ انتشار 2014