Backpropagation for Neural Dnf{ and Cnf{networks

نویسندگان

  • Christoph Herrmann
  • Andreas Thier
چکیده

The architecture of a neural network with its links and weights can be viewed as a knowledge representation. To overcome the black{box problem of not knowing what knowledge is hidden in a neural architecture, we present a strictly logically operating network. Each neuron represents either a disjunc-tion or conjunction of its inputs and the net thus performs the function of a logic formula. This formula can be extracted from the net after completed training. The well{known backpropagation algorithm is adapted to train such logical neural nets. An on{line pruning algorithm is also implemented to eliminate redundant weights.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eecient Read-restricted Monotone Cnf/dnf Dualization by Learning with Membership Queries Produced as Part of the Esprit Working Group in Neural and Computational Learning Ii, Neurocolt2 27150

We consider exact learning monotone CNF formulas in which each variable appears at most some constant k times (\read-k" monotone CNF). Let f : f0;1g n ! f0;1g be expressible as a read-k monotone CNF formula for some natural number k. We give an incremental output polynomial time algorithm for exact learning both the read-k CNF and (not necessarily read restricted) DNF descriptions of f. The alg...

متن کامل

Spiking and saturating dendrites differentially expand single neuron computation capacity

The integration of excitatory inputs in dendrites is non-linear: multiple excitatory inputs can produce a local depolarization departing from the arithmetic sum of each input’s response taken separately. If this depolarization is bigger than the arithmetic sum, the dendrite is spiking; if the depolarization is smaller, the dendrite is saturating. Decomposing a dendritic tree into independent de...

متن کامل

HYBRID ARTIFICIAL NEURAL NETWORKS BASED ON ACO-RPROP FOR GENERATING MULTIPLE SPECTRUM-COMPATIBLE ARTIFICIAL EARTHQUAKE RECORDS FOR SPECIFIED SITE GEOLOGY

The main objective of this paper is to use ant optimized neural networks to generate artificial earthquake records. In this regard, training accelerograms selected according to the site geology of recorder station and Wavelet Packet Transform (WPT) used to decompose these records. Then Artificial Neural Networks (ANN) optimized with Ant Colony Optimization and resilient Backpropagation algorith...

متن کامل

Polyhedrons and Perceptrons Are Functionally Equivalent

Mathematical definitions of polyhedrons and perceptron networks are discussed. The formalization of polyhedrons is done in a rather traditional way. For networks, previously proposed systems are developed. Perceptron networks in disjunctive normal form (DNF) and conjunctive normal forms (CNF) are introduced. The main theme is that single output perceptron neural networks and characteristic func...

متن کامل

Prediction of breeding values for the milk production trait in Iranian Holstein cows applying artificial neural networks

The artificial neural networks, the learning algorithms and mathematical models mimicking the information processing ability of human brain can be used non-linear and complex data. The aim of this study was to predict the breeding values for milk production trait in Iranian Holstein cows applying artificial neural networks. Data on 35167 Iranian Holstein cows recorded between 1998 to 2009 were ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008