Extrinsic chirality of non-concentric plasmonic nanorings

نویسندگان

  • VLADIMIR E. BOCHENKOV
  • GUNNAR KLÖS
  • DUNCAN S. SUTHERLAND
چکیده

We show how extrinsic chirality, i.e. the optical activity of achiral media exhibited at oblique light incidence, can be achieved in plasmonic nanorings by symmetry breaking. We demonstrate that even a small, 5% offset of an inner hole of a 190 nm gold ring results in a measurable circular dichroism signal in the near-infrared region. By using computer simulations, we show that optical activity arises upon excitation of a symmetric dipolar localized surface plasmon resonance mode due to the appearance of co-aligned electric and magnetic dipole moments. © 2017 Optical Society of America OCIS codes: (250.5403) Plasmonics; (160.4236 ) Nanomaterials. References and links 1. W. Lenz, “Malformations caused by drugs in pregnancy,” Am. J. Dis. Child. 112, 99–106 (1966). 2. E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nature Nanotech. 5, 783–787 (2010). 3. A. Ben-Moshe, B. M. Maoz, A. O. Govorov, and G. Markovich, “Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances,” Chem. Soc. Rev. 42, 7028–7041 (2013). 4. H. Zhang and A. O. Govorov, “Giant circular dichroism of a molecule in a region of strong plasmon resonances between two neighboring gold nanocrystals,” Phys. Rev. B 87, 075410 (2013). 5. W. Ma, H. Kuang, L. Wang, L. Xu, W. S. Chang, H. Zhang, M. Sun, Y. Zhu, Y. Zhao, L. Liu, C. Xu, S. Link, and N. A. Kotov, “Chiral plasmonics of self-assembled nanorod dimers,” Sci. Rep. 3, 1934 (2013). 6. Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications,” Nanotechnology 27, 412001 (2016). 7. M. Hentschel, M. Schäferling, X. Duan, H. Giessen, and N. Liu, “Chiral plasmonics,” Science Advances 3, e1602735 (2017). 8. A. Kuzyk, R. Schreiber, Z. Y. Fan, G. Pardatscher, E. M. Roller, A. Hogele, F. C. Simmel, A. O. Govorov, and T. Liedl, “Dna-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483, 311–314 (2012). 9. W. Ma, H. Kuang, L. Xu, L. Ding, C. Xu, L. Wang, and N. A. Kotov, “Attomolar dna detection with chiral nanorod assemblies,” Nat. Commun. 4, 2689 (2013). 10. M. Hentschel, L. Wu, M. Schaferling, P. Bai, E. P. Li, and H. Giessen, “Optical properties of chiral three-dimensional plasmonic oligomers at the onset of charge-transfer plasmons,” ACS Nano 6, 10355–10365 (2012). 11. M. Hentschel, M. Schaferling, T. Weiss, N. Liu, and H. Giessen, “Three-dimensional chiral plasmonic oligomers,” Nano Lett. 12, 2542–2547 (2012). 12. E. Plum, “Extrinsic chirality: Tunable optically active reflectors and perfect absorbers,” App. Phys. Lett. 108, 241905 (2016). 13. I. Sersic, M. A. van de Haar, F. B. Arango, and A. F. Koenderink, “Ubiquity of optical activity in planar metamaterial scatterers,” Phys. Rev. Lett. 108, 223903 (2012). 14. L. Hu, X. Tian, Y. Huang, L. Fang, and Y. Fang, “Quantitatively analyzing the mechanism of giant circular dichroism in extrinsic plasmonic chiral nanostructures by tracking the interplay of electric and magnetic dipoles,” Nanoscale 8, 3720–3728 (2016). 15. X. Ma, M. Pu, X. Li, Y. Guo, P. Gao, and X. Luo, “Meta-chirality: Fundamentals, construction and applications,” Nanomaterials 7, 116 (2017). 16. E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: Optical activity without chirality,” Phys. Rev. Lett. 102, 113902 (2009). 17. J. H. Shi, Z. Zhu, H. F. Ma, W. X. Jiang, and T. J. Cui, “Tunable symmetric and asymmetric resonances in an asymmetrical split-ring metamaterial,” J. Appl. Phys. 112, 073522 (2012). Vol. 7, No. 10 | 1 Oct 2017 | OPTICAL MATERIALS EXPRESS 3715 #304113 https://doi.org/10.1364/OME.7.003715 Journal © 2017 Received 14 Aug 2017; revised 15 Sep 2017; accepted 18 Sep 2017; published 25 Sep 2017 18. C. Feng, Z. B. Wang, S. Lee, J. Jiao, and L. Li, “Giant circular dichroism in extrinsic chiral metamaterials excited by off-normal incident laser beams,” Opt. Commun. 285, 2750–2754 (2012). 19. X. Lu, J. Wu, Q. Zhu, J. Zhao, Q.Wang, L. Zhan, andW. Ni, “Circular dichroism from single plasmonic nanostructures with extrinsic chirality,” Nanoscale 6, 14244–14253 (2014). 20. L. Hu, Y. Huang, L. Fang, G. Chen, H. Wei, and Y. Fang, “Fano resonance assisting plasmonic circular dichroism from nanorice heterodimers for extrinsic chirality,” Sci. Rep. 5, 16069 (2015). 21. V. E. Bochenkov and D. S. Sutherland, “From rings to crescents: a novel fabrication technique uncovers the transition details,” Nano Lett. 13, 1216–1220 (2013). 22. P. Hanarp, D. S. Sutherland, J. Gold, and B. Kasemo, “Control of nanoparticle film structure for colloidal lithography,” Coll. Surf. A 214, 23 – 36 (2003). 23. P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370–4379 (1972). 24. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plasmonic Thermal Conductance of Stack of Metallic Nanorings

In this paper, we study the plasmonic thermal conductance of ordered stacks of metallic nanorings in a host material. Using second quantized formalism of the Random Phase Approximation, we first determine the dispersion relations of surface plasmon waves on the stacks of nanorings. Then, using Landauer-Buttiker formalism, we determine the coefficient of plasmonic thermal conductance and heat cu...

متن کامل

Optical Chirality Enhancement in Twisted Arrays of Plasmonic Nano-rods

An important property of electromagnetic fields, which arises from the interaction between fields and chiral molecules, is called optical chirality. By enhancing this field property, while maintaining constant input power, we are able to increase absorption of circularly polarized light by chiral molecules of a certain handedness. This enhancement is achieved through the use of achiral plasmoni...

متن کامل

Seed-mediated growth of Au nanorings with size control on Pd ultrathin nanosheets and their tunable surface plasmonic properties.

Nanorings made of noble metals such as Au and Ag have attracted particular interest in plasmonic properties since they allow remarkable tunability of plasmon resonance wavelengths associated with their unique structural features. Unfortunately, most of the syntheses for Au nanorings involve complex procedures and/or require highly specialized and expensive facilities. Here, we report a seed-med...

متن کامل

Lithographically patterned electrodeposition of gold, silver, and nickel nanoring arrays with widely tunable near-infrared plasmonic resonances.

A novel low-cost nanoring array fabrication method that combines the process of lithographically patterned nanoscale electrodeposition (LPNE) with colloidal lithography is described. Nanoring array fabrication was accomplished in three steps: (i) a thin (70 nm) sacrificial nickel or silver film was first vapor-deposited onto a plasma-etched packed colloidal monolayer; (ii) the polymer colloids ...

متن کامل

Lithographically Patterned Nanoscale Electrodeposition of Plasmonic, Bimetallic, Semiconductor, Magnetic, and Polymer Nanoring Arrays

Large area arrays of magnetic, semiconducting, and insulating nanorings were created by coupling colloidal lithography with nanoscale electrodeposition. This versatile nanoscale fabrication process allows for the independent tuning of the spacing, diameter, and width of the nanorings with typical values of 1.0 μm, 750 nm, and 100 nm, respectively, and was used to form nanorings from a host of m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017