Nearly-optimal bounds for sparse recovery in generic norms, with applications to k-median sketching
نویسندگان
چکیده
We initiate the study of trade-offs between sparsity and the number of measurements in sparse recovery schemes for generic norms. Specifically, for a norm ‖ ·‖, sparsity parameter k, approximation factor K > 0, and probability of failure P > 0, we ask: what is the minimal value of m so that there is a distribution over m × n matrices A with the property that for any x, given Ax, we can recover a k-sparse approximation to x in the given norm with probability at least 1 − P? We give a partial answer to this problem, by showing that for norms that admit efficient linear sketches, the optimal number of measurements m is closely related to the doubling dimension of the metric induced by the norm ‖ · ‖ on the set of all k-sparse vectors. By applying our result to specific norms, we cast known measurement bounds in our general framework (for the `p norms, p ∈ [1, 2]) as well as provide new, measurementefficient schemes (for the Earth-Mover Distance norm). The latter result directly implies more succinct linear sketches for the well-studied planar k-median clustering problem. Finally, our lower bound for the doubling dimension of the EMD norm enables us to resolve the open question of [Frahling-Sohler, STOC’05] about the space complexity of clustering problems in the dynamic streaming model.
منابع مشابه
On Deterministic Sketching and Streaming for Sparse Recovery and Norm Estimation
We study classic streaming and sparse recovery problems using deterministic linear sketches, including `1/`1 and `∞/`1 sparse recovery problems, norm estimation, and approximate inner product. We focus on devising a fixed matrix A ∈ Rm×n and a deterministic recovery/estimation procedure which work for all possible input vectors simultaneously. We contribute several improved bounds for these pro...
متن کاملLimits on Sparse Support Recovery via Linear Sketching with Random Expander Matrices
Linear sketching is a powerful tool for the problem of sparse signal recovery, having numerous applications such as compressive sensing, data stream computing, graph sketching, and routing. Motivated by applications where the positions of the non-zero entries in a sparse vector are of primary interest, we consider the problem of support recovery from a linear sketch taking the form Y = X +Z. We...
متن کاملSparse recovery and Fourier sampling
In the last decade a broad literature has arisen studying sparse recovery, the estimation of sparse vectors from low dimensional linear projections. Sparse recovery has a wide variety of applications such as streaming algorithms, image acquisition, and disease testing. A particularly important subclass of sparse recovery is the sparse Fourier transform, which considers the computation of a disc...
متن کاملModel-based Sketching and Recovery with Expanders
Linear sketching and recovery of sparse vectors with randomly constructed sparse matrices has numerous applications in several areas, including compressive sensing, data stream computing, graph sketching, and combinatorial group testing. This paper considers the same problem with the added twist that the sparse coefficients of the unknown vector exhibit further correlations as determined by a k...
متن کاملDimension Reduction Algorithms for Near - Optimal Low - Dimensional Embeddings and Compressive Sensing
In this thesis, we establish theoretical guarantees for several dimension reduction algorithms developed for applications in compressive sensing and signal processing. In each instance, the input is a point or set of points in d-dimensional Euclidean space, and the goal is to find a linear function from Rd into Rk , where k << d, such that the resulting embedding of the input pointset into k-di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016