De-Novo Learning of Genome-Scale Regulatory Networks in S. cerevisiae

نویسندگان

  • Sisi Ma
  • Patrick Kemmeren
  • David Gresham
  • Alexander Statnikov
چکیده

De-novo reverse-engineering of genome-scale regulatory networks is a fundamental problem of biological and translational research. One of the major obstacles in developing and evaluating approaches for de-novo gene network reconstruction is the absence of high-quality genome-scale gold-standard networks of direct regulatory interactions. To establish a foundation for assessing the accuracy of de-novo gene network reverse-engineering, we constructed high-quality genome-scale gold-standard networks of direct regulatory interactions in Saccharomyces cerevisiae that incorporate binding and gene knockout data. Then we used 7 performance metrics to assess accuracy of 18 statistical association-based approaches for de-novo network reverse-engineering in 13 different datasets spanning over 4 data types. We found that most reconstructed networks had statistically significant accuracies. We also determined which statistical approaches and datasets/data types lead to networks with better reconstruction accuracies. While we found that de-novo reverse-engineering of the entire network is a challenging problem, it is possible to reconstruct sub-networks around some transcription factors with good accuracy. The latter transcription factors can be identified by assessing their connectivity in the inferred networks. Overall, this study provides the gene network reverse-engineering community with a rigorous assessment of the accuracy of S. cerevisiae gene network reconstruction and variability in performance of various approaches for learning both the entire network and sub-networks around transcription factors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-70: Evidence for Differential Gene Expression of A Major EpigeneticModifier Enzyme, de novo DNA Methyltransferase 3b, through Vitrification of Mouse Ovary Tissue

Background: Ovarian tissue cryopreservation is a feasible method to preserve female reproductive potential, especially in young patients with cancer or in women at risk of premature ovarian failure. Vitrification has recently emerged as a new trend for biological specimen preservation. On the other hand, gene expression that changes during vitrification can influence oocyte maturation and need ...

متن کامل

I-10: Transcriptomics in Oocyte Mediated Cellular Reprogramming

a:4:{s:10:"Background";s:1707:"Early embryonic development in mammals begins in transcriptional silence with an oocyte-mediated transcriptional reprogramming of parental gametes occurs during a so called across-the-board process of “erase-and-rebuild”. In this process, the parental transcription programs are erased long before (maternal) or soon thereafter (paternal) fertilization to generate a...

متن کامل

Genome-scale bacterial transcriptional regulatory networks: reconstruction and integrated analysis with metabolic models

Advances in sequencing technology are resulting in the rapid emergence of large numbers of complete genome sequences. High-throughput annotation and metabolic modeling of these genomes is now a reality. The high-throughput reconstruction and analysis of genome-scale transcriptional regulatory networks represent the next frontier in microbial bioinformatics. The fruition of this next frontier wi...

متن کامل

A comprehensive assessment of methods for de-novo reverse-engineering of genome-scale regulatory networks.

De-novo reverse-engineering of genome-scale regulatory networks is an increasingly important objective for biological and translational research. While many methods have been recently developed for this task, their absolute and relative performance remains poorly understood. The present study conducts a rigorous performance assessment of 32 computational methods/variants for de-novo reverse-eng...

متن کامل

Reconstruction and applications of consensus yeast metabolic network based on RNA sequencing

One practical application of genome-scale metabolic reconstructions is to interrogate multispecies relationships. Here, we report a consensus metabolic model in four yeast species (Saccharomyces cerevisiae, S. paradoxus, S. mikatae, and S. bayanus) by integrating metabolic network simulations with RNA sequencing (RNA-seq) datasets. We generated high-resolution transcriptome maps of four yeast s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014