Lévy flight approximations for scaled transformations of random walks
نویسندگان
چکیده
Complex systems under anomalous diffusive regime can be modelled by approximating sequences of random walks, Sn =X1 + X2 + · · · + Xn, where the i.i.d. random variables Xj ’s have fat-tailed distribution. Such random walks are referred by physicists as Lévy flights or motions and have been used to model financial data. For better adjustment to real-world data several modified Lévy flights have been proposed: truncated, gradually truncated or exponentially damped Lévy flights. On the other hand, scaled transformations of random walks possess a Lévy stable limiting distribution. In this work, under the assumption that the analyzed data belongs to the domain of attraction of a symmetric Lévy stable distributionL , , we present consistent estimates for the stability index and for the scaling parameter . Variations of the model that allow distinct left and right tail behavior will be explored. Illustrations for returns of exchange rates of several countries are also included. © 2007 Elsevier B.V. All rights reserved.
منابع مشابه
Fractional Quantum Field Theory, Path Integral, and Stochastic Differential Equation for Strongly Interacting Many-Particle Systems
While free and weakly interacting particles are well described by a second-quantized nonlinear Schrödinger field, or relativistic versions of it, with various approximations, the fields of strongly interacting particles are governed by effective actions, whose quadratic terms are extremized by fractional wave equations. Their particle orbits perform universal Lévy walks rather than Gaussian ran...
متن کاملSample Path Large Deviations for Heavy-Tailed Lévy Processes and Random Walks
Let X be a Lévy process with regularly varying Lévy measure ν. We obtain sample-path large deviations of scaled processes X̄n(t) , X(nt)/n and obtain a similar result for random walks. Our results yield detailed asymptotic estimates in scenarios where multiple big jumps in the increment are required to make a rare event happen. In addition, we investigate connections with the classical large-dev...
متن کاملar X iv : m at h / 07 03 33 9 v 1 [ m at h . FA ] 1 2 M ar 2 00 7 APPROXIMATION OF QUANTUM LÉVY PROCESSES BY QUANTUM RANDOM WALKS
Every quantum Lévy process with a bounded stochastic generator is shown to arise as a strong limit of a family of suitably scaled quantum random walks. The note is concerned with investigating convergence of random walks on quantum groups to quantum Lévy processes. The theory of the latter is a natural non-commutative counterpart of the theory of classical Lévy processes on groups ([Hey]). It h...
متن کاملLévy random walks on multiplex networks
Random walks constitute a fundamental mechanism for many dynamics taking place on complex networks. Besides, as a more realistic description of our society, multiplex networks have been receiving a growing interest, as well as the dynamical processes that occur on top of them. Here, inspired by one specific model of random walks that seems to be ubiquitous across many scientific fields, the Lév...
متن کاملNavigation by anomalous random walks on complex networks
Anomalous random walks having long-range jumps are a critical branch of dynamical processes on networks, which can model a number of search and transport processes. However, traditional measurements based on mean first passage time are not useful as they fail to characterize the cost associated with each jump. Here we introduce a new concept of mean first traverse distance (MFTD) to characteriz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 51 شماره
صفحات -
تاریخ انتشار 2007