On invariant operations on pseudo-Riemannian manifolds

نویسندگان

  • Jan Slovák
  • J. Slovák
چکیده

Invariant polynomial operators on Riemannian manifolds are well understood and the knowledge of full lists of them becomes an effective tool in Riemannian geometry, [Atiyah, Bott, Patodi, 73] is a very good example. The present short paper is in fact a continuation of [Slovák, 92] where the classification problem is reconsidered under very mild assumptions and still complete classification results are derived even in some nonlinear situations. Therefore, we neither repeat the detailed exposition of the whole setting and the technical tools, nor we include all details of the proofs, the interested reader can find them in the above paper (or in the monograph [Kolář, Michor, Slovák]). After a short introduction, we study operators homogeneous in weight on oriented pseudo-Riemannian manifolds. In particular, we are interested in those of weight zero. The results involve generalizations of some well known theorems by [Gilkey, 75] and [Stredder, 75].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Commutative curvature operators over four-dimensional generalized symmetric spaces

Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.

متن کامل

ACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE

A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...

متن کامل

Computing Bi-Invariant Pseudo-Metrics on Lie Groups for Consistent Statistics

In computational anatomy, organ’s shapes are often modeled as deformations of a reference shape, i.e., as elements of a Lie group. To analyze the variability of the human anatomy in this framework, we need to perform statistics on Lie groups. A Lie group is a manifold with a consistent group structure. Statistics on Riemannian manifolds have been well studied, but to use the statistical Riemann...

متن کامل

A Geometry Preserving Kernel over Riemannian Manifolds

Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...

متن کامل

G-structures Defined on Pseudo-riemannian Manifolds

Concepts and techniques from the theory of G-structures of higher order are applied to the study of certain structures (volume forms, conformal structures, linear connections and projective structures) defined on a pseudo-Riemannian manifold. Several relationships between the structures involved have been investigated. The operations allowed on G-structures, such as intersection, inclusion, red...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010