A local version of the Pawlucki-Plesniak extension operator
نویسندگان
چکیده
Using local interpolation ofWhitney functions, we generalize the Pawłucki and Pleśniak approach to construct a continuous linear extension operator. We show the continuity of the modified operator in the case of generalized Cantor-type sets without Markov’s Property. © 2004 Elsevier Inc. All rights reserved. MSC: primary 46E10; secondary 41A05; 41A10
منابع مشابه
Analytic extension of a $N$th roots of $M$-hyponormal operator
In this paper, we study some properties of analytic extension of a $n$th roots of $M$-hyponormal operator. We show that every analytic extension of a $n$th roots of $M$-hyponormal operator is subscalar of order $2k+2n$. As a consequence, we get that if the spectrum of such operator $T$ has a nonempty interior in $mathbb{C}$, then $T$ has a nontrivial invariant subspace. Finally, w...
متن کاملExtension of functions with bounded finite differences
In 1934, Whitney posed the problem of how to recognize whether a function f defined on a closed subset X of R is the restriction of a function of class C. Whitney himself solved the one-dimensional case (i.e., for n = 1) in terms of finite differences [W1, W2, W3], giving the classical Whitney’s extension theorem. A geometrical solution for the case C(R) was given by G. Glaeser [G], who introdu...
متن کاملAn Lp-Lq-version Of Morgan's Theorem For The Generalized Fourier Transform Associated with a Dunkl Type Operator
The aim of this paper is to prove new quantitative uncertainty principle for the generalized Fourier transform connected with a Dunkl type operator on the real line. More precisely we prove An Lp-Lq-version of Morgan's theorem.
متن کاملOn the Diagram of One Type Modal Operators on Intuitionistic fuzzy sets: Last expanding with $Z_{alpha ,beta }^{omega ,theta
Intuitionistic Fuzzy Modal Operator was defined by Atanassov in cite{at3}in 1999. In 2001, cite{at4}, he introduced the generalization of thesemodal operators. After this study, in 2004, Dencheva cite{dencheva} definedsecond extension of these operators. In 2006, the third extension of thesewas defined in cite{at6} by Atanassov. In 2007,cite{gc1}, the authorintroduced a new operator over Intuit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Approximation Theory
دوره 132 شماره
صفحات -
تاریخ انتشار 2005