Quantification of ergodicity in stochastic homogenization: optimal bounds via spectral gap on Glauber dynamics — long version

نویسندگان

  • A. Gloria
  • F. Otto
چکیده

We study the effective large-scale behavior of discrete elliptic equations on the lattice Z with random coefficients. The theory of stochastic homogenization relates the random but stationary field of coefficients with a deterministic matrix of effective coefficients. This is done via the corrector problem, which can be viewed as a highly degenerate elliptic equation on the infinite-dimensional space of admissible coefficient fields. In this contribution we develop quantitative methods for the corrector problem assuming that the ensemble of coefficient fields satisfies a spectral gap estimate w. r. t. a Glauber dynamics. As a main result we prove an optimal estimate for the decay in time of the parabolic equation associated to the corrector problem (i. e. for the “random environment as seen from a random walker”). As a corollary we obtain existence and moment bounds for stationary correctors (in dimension d > 2) and optimal estimates for regularized versions of the corrector (in dimensions d ≥ 2). We also give a self-contained proof for a new estimate on the gradient of the parabolic, variable-coefficient Green’s function, which is a crucial analytic ingredient in our method. As an application, we study the approximation of the homogenized coefficients via a representative volume element. The approximation introduces two types of errors. Based on our quantitative methods, we develop an error analysis that gives optimal bounds in terms of scaling in the size of the representative volume element — even for large ellipticity ratios. ∗Université Libre de Bruxelles (ULB), Brussels, Belgium & Project-team SIMPAF, Inria Lille Nord Europe, Villeneuve d’Ascq, France, [email protected] †Max Planck Institute for Mathematics in the Sciences, Inselstr. 22, 04103 Leipzig, Germany, [email protected] ‡Max Planck Institute for Mathematics in the Sciences, Inselstr. 22, 04103 Leipzig, Germany, [email protected] ha l-0 07 82 07 5, v er si on 1 29 J an 2 01 3

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantification of ergodicity in stochastic homogenization: Optimal bounds via spectral gap on Glauber dynamics

We study quantitatively the effective large-scale behavior of discrete elliptic equations on the lattice Z with random coefficients. The theory of stochastic homogenization relates the random, stationary, and ergodic field of coefficients with a deterministic matrix of effective coefficients. This is done via the corrector problem, which can be viewed as a highly degenerate elliptic equation on...

متن کامل

Stability of Interfaces and Stochastic Dynamics in the Regime of Partial Wetting

The goal of this paper is twofold. First, assuming strict convexity of the surface tension, we derive a stability property with respect to the Hausdorff distance of a coarse grained representation of the interface between the two pure phases of the Ising model. This improves the L description of phase segregation. zUsing this result and an additional assumption on mixing properties of the under...

متن کامل

Lower Estimates of Transition Densities and Bounds on Exponential Ergodicity for Stochastic Pde’s B. Goldys and B. Maslowski

A formula for the transition density of a Markov process defined by an infinitedimensional stochastic equation is given in terms of the Ornstein Uhlenbeck Bridge, and a useful lower estimate on the density is provided. As a consequence, uniform exponential ergodicity and V-ergodicity are proven under suitable conditions for a large class of equations. The method allows us to find computable bou...

متن کامل

Lower Estimates of Transition Densities and Bounds on Exponential Ergodicity for Stochastic Pde’s

A formula for the transition density of a Markov process defined by an infinite-dimensional stochastic equation is given in terms of the Ornstein–Uhlenbeck bridge and a useful lower estimate on the density is provided. As a consequence, uniform exponential ergodicity and V ergodicity are proved for a large class of equations. We also provide computable bounds on the convergence rates and the sp...

متن کامل

Spectral gap estimates for interacting particle systems via a Bakry & Emery – type approach

We develop a general technique, based on the Bakry–Emery approach, to estimate spectral gaps of a class of Markov operator. We apply this technique to various interacting particle systems. In particular, we give a simple and short proof of the diffusive scaling of the spectral gap of the Kawasaki model at high temperature. Similar results are derived for Kawasaki-type dynamics in the lattice wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013