Boundary Handling Approaches in Particle Swarm Optimization

نویسندگان

  • Nikhil Padhye
  • Kalyanmoy Deb
  • Pulkit Mittal
چکیده

In recent years, Particle Swarm Optimization (PSO) methods have gained popularity in solving single objective and other optimization tasks. In particular, solving constrained optimization problems using swarm methods has been attempted in past but arguably stays as one of the challenging issues. A commonly encountered situation is one in which constraints manifest themselves in form of variable bounds. In such scenarios the issue of constraint-handling is somewhat simplified. This paper attempts to review popular bound handling methods, in context to PSO, and proposes new methods which are found to be robust and consistent in terms of performance over several simulation scenarios. The effectiveness of bound handling methods is shown PSO; however the methods are general and can be combined with any other optimization procedure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling and Hybrid Pareto Optimization of Cyclone Separators Using Group Method of Data Handling (GMDH) and Particle Swarm Optimization (PSO)

In present study, a three-step multi-objective optimization algorithm of cyclone separators is catered for the design objectives. First, the pressure drop (Dp) and collection efficiency (h) in a set of cyclone separators are numerically evaluated. Secondly, two meta models based on the evolved Group Method of Data Handling (GMDH) type neural networks are regarded to model the Dp and h as the re...

متن کامل

Experimental Study on Boundary Constraint Handling in Particle Swarm Optimization: From Population Diversity Perspective

Premature convergence happens in Particle Swarm Optimization (PSO) for solving both multimodal problems and unimodal problems. With an improper boundary constraints handling method, particles may get “stuck in” the boundary. Premature convergence means that an algorithm has lost its ability of exploration. Population diversity is an effective way to monitor an algorithm’s ability of exploration...

متن کامل

OPTIMAL DESIGN OF ARCH DAMS BY COMBINING PARTICLE SWARM OPTIMIZATION AND GROUP METHOD OF DATA HANDLING

Optimization techniques can be efficiently utilized to achieve an optimal shape for arch dams. This optimal design can consider the conditions of the economy and safety simultaneously. The main aim is to present an applicable and practical model and suggest an algorithm for optimization of concrete arch dams to enhance their seismic performance. To achieve this purpose, a preliminary optimizati...

متن کامل

Particle swarms for constrained optimization

Particle swarm optimization (PSO) is an optimization approach from the field of artificial intelligence. A population of so-called particles moves through the parameter space defined by the optimization problem, searching for good solutions. Inspired by natural swarms, the movements of the swarm members depend on own experiences and on the experiences of adjacent particles. PSO algorithms are m...

متن کامل

An efficient approach for availability analysis through fuzzy differential equations and particle swarm optimization

This article formulates a new technique for behavior analysis of systems through fuzzy Kolmogorov's differential equations and Particle Swarm Optimization. For handling the uncertainty in data, differential equations have been formulated by Markov modeling of system in fuzzy environment. First solution of these derived fuzzy Kolmogorov's differential equations has been found by Runge-Kutta four...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012