Pseudo holomorphic curves in symplectic manifolds

نویسنده

  • M. Gromov
چکیده

Definitions. A parametrized (pseudo holomorphic) J-curve in an almost complex manifold (IS, J) is a holomorphic map of a Riemann surface into Is, say f : (S, J3 ~(V, J). The image C=f(S)C V is called a (non-parametrized) J-curve in V. A curve C C V is called closed if it can be (holomorphically !) parametrized by a closed surface S. We call C regular if there is a parametrization f : S ~ V which is a smooth proper embedding. A curve is called rational if one can choose S diffeomorphic to the sphere S 2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Invariants of real symplectic 4-manifolds and lower bounds in real enumerative geometry

We first present the construction of the moduli space of real pseudo-holomorphic curves in a given real symplectic manifold. Then, following the approach of Gromov and Witten [3, 15, 10], we construct invariants under deformation of real rational symplectic 4-manifolds. These invariants provide lower bounds for the number of real rational J-holomorphic curves in a given homology class passing t...

متن کامل

Algebraic and symplectic Gromov-Witten invariants coincide

Gromov-Witten invariants “count” (pseudo-) holomorphic curves on algebraic or symplectic manifolds. This amounts to intersection theory on moduli spaces of such curves. Because in general these are non-compact, singular and not of “expected dimension”, a rigorous mathematical definition is far from trivial. For a reasonably large class of manifolds including Fano and Calabi-Yau manifolds this h...

متن کامل

Part 2: Pseudo-holomorphic Curves

1. Properties of J-holomorphic curves 1 1.1. Basic definitions 1 1.2. Unique continuation and critical points 5 1.3. Simple curves 8 1.4. Adjunction inequality 9 2. Gromov compactness 12 2.1. Gromov compactness theorem 12 2.2. Energy estimate and bubbling 15 2.3. The isoperimetric inequality 19 2.4. Bubbles connect 22 3. Moduli spaces of J-holomorphic curves 25 3.1. The Fredholm setup 25 3.2. T...

متن کامل

A Convergence Theorem for Riemannian Submanifolds

In this paper we study the convergence of Riemannian submanifolds. In particular, we prove that any sequence of closed submanifolds with bounded normal curvature and volume in a closed Riemannian manifold subconverge to a closed submanifold in the C1 ,Q topology. We also obtain some applications to irreducible homogeneous manifolds and pseudo-holomorphic curves in symplectic manifolds.

متن کامل

Floer homology, symplectic and complex hyperbolicities

On one side, from the properties of Floer cohomology, invariant associated to a symplectic manifold, we define and study a notion of symplectic hyperbolicity and a symplectic capacity measuring it. On the other side, the usual notions of complex hyperbolicity can be straightforwardly generalized to the case of almost-complex manifolds by using pseudo-holomorphic curves. That’s why we study the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005