0 The Average - Case Area of Heilbronn - Type Triangles ∗

نویسندگان

  • Tao Jiang
  • Ming Li
چکیده

triangles with vertices chosen from among n points in the unit square, U , let T be the one with the smallest area, and let A be the area of T . Heilbronn’s triangle problem asks for the maximum value assumed by A over all choices of n points. We consider the average-case: If the n points are chosen independently and at random (uniform distribution) then there exist positive c and C such that c/n < μn < C/n 3 for all large enough n, where μn is the expectation of A. Moreover, with probability close to one c/n < A < C/n. Our proof uses the incompressibility method based on Kolmogorov complexity: it therefore determines the area of the smallest triangle for an arrangement in “general position.”

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partitions of planar sets into small triangles by

Given 3n points in the unit square, n ≥ 2, they determine n triangles whose vertices exhaust the given 3n points in many ways. Choose the n triangles so that the sum of their areas is minimal, and let a *(n) be the maximum value of this minimum over all configurations of 3n points. Then n − 1/2 << a *(n) << n − 1/9 is deduced using results on the Heilbronn triangle problem. If the triangles are...

متن کامل

The Expected Size of Heilbronn's Triangles

Heilbronn’s triangle problem asks for the least ∆ such that n points lying in the unit disc necessarily contain a triangle of area at most ∆. Heilbronn initially conjectured ∆ = O(1/n). As a result of concerted mathematical effort it is currently known that there are positive constants c and C such that c logn/n ≤ ∆ ≤ C/n for every constant ǫ > 0. We resolve Heilbronn’s problem in the expected ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000