Performance and Power Evaluation of an Intelligently Adaptive Data Cache
نویسندگان
چکیده
We describe the analysis of an on-line pattern-recognition algorithm to dynamically control the configuration of the L1 data cache of a high-performance processor. The microarchitecture achieves higher performance and energy saving due to the accommodation of operating frequency, capacity, set-associativity, line size, hit latency, energy per access, and chip area to program workload and ILP. We show that for the operating frequency 4.5 GHz, the execution time is always reduced with an average measure of 12.1% when compared to a non-adaptive high-performance processor. Additionally, the energy saving is 2.7% on average, and t1he product time-energy is reduced on average by 14.9%. We also consider a profile-based reconfiguration of data cache, which allows picking different cache configurations but only one can be chosen for each program. Experimental results indicate that this approach yields a high percentage of the performance improvement and energy saving achieved by the on-line algorithm.
منابع مشابه
Mathematical Analysis of Optimal Tracking Interval Management for Power Efficient Target Tracking Wireless Sensor Networks
In this paper, we study the problem of power efficient tracking interval management for distributed target tracking wireless sensor networks (WSNs). We first analyze the performance of a distributed target tracking network with one moving object, using a quantitative mathematical analysis. We show that previously proposed algorithms are efficient only for constant average velocity objects howev...
متن کاملProactive Power-Aware Cache Management for Mobile Computing Systems
ÐRecent work has shown that invalidation report (IR)-based cache management is an attractive approach for mobile environments. However, the IR-based cache invalidation solution has some limitations, such as long query delay, low bandwidth utilization, and it is not suitable for applications where data change frequently. In this paper, we propose a proactive cache management scheme to address th...
متن کاملCache Power Budgeting for Performance
Power is arguably the critical resource in computer system design today. In this work, we focus on maximizing performance of a chip multiprocessor (CMP) system, for a given power budget, by developing techniques to budget power between processor cores and caches. Dynamic cache configuration can reduce cache capacity and associativity, thereby freeing up chip power, but may increase the miss rat...
متن کاملAdaptive Subcarrier Assignment and Power Distribution in Multiuser OFDM Systems with Proportional Data Rate Requirement
A low complexity dynamic subcarrier and power allocation methodology for downlink communication in an OFDM-based multiuser environment is developed. The problem of maximizing overall capacity with constraints on total power consumption, bit error rate and data rate proportionality among users requiring different QOS specifications is formulated. Assuming perfect knowledge of the instantaneo...
متن کاملReduction in Cache Memory Power Consumption based on Replacement Quantity
Today power consumption is considered to be one of the important issues. Therefore, its reduction plays a considerable role in developing systems. Previous studies have shown that approximately 50% of total power consumption is used in cache memories. There is a direct relationship between power consumption and replacement quantity made in cache. The less the number of replacements is, the less...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005