A survey on sensing methods and feature extraction algorithms for SLAM problem
نویسندگان
چکیده
This paper is a survey work for a bigger project for designing a Visual SLAM robot to generate 3D dense map of an unknown unstructured environment. A lot of factors have to be considered while designing a SLAM robot. Sensing method of the SLAM robot should be determined by considering the kind of environment to be modelled. Similarly the type of environment determines the suitable feature extraction method. This paper goes through the sensing methods used in some recently published papers. The main objective of this survey is to conduct a comparative study among the current sensing methodsandfeature extraction algorithms and to extract out the best for our work.
منابع مشابه
Overlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery
Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...
متن کاملSupervised Feature Extraction of Face Images for Improvement of Recognition Accuracy
Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...
متن کاملHyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations
The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...
متن کاملNew Adaptive UKF Algorithm to Improve the Accuracy of SLAM
SLAM (Simultaneous Localization and Mapping) is a fundamental problem when an autonomous mobile robot explores an unknown environment by constructing/updating the environment map and localizing itself in this built map. The all-important problem of SLAM is revisited in this paper and a solution based on Adaptive Unscented Kalman Filter (AUKF) is presented. We will explain the detailed algorithm...
متن کاملAn Explicit Loop Closing Technique for 6D SLAM
Simultaneous Localization and Mapping (SLAM) is the problem of building a map of an unknown environment by a mobile robot while at the same time navigating the environment, using the unfinished map. For SLAM, two tasks have to be solved: First reliable feature extraction and data association, second the optimal estimation of poses and features. These two parts are often referred to as SLAM fron...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1303.3605 شماره
صفحات -
تاریخ انتشار 2013