KBGAN: Adversarial Learning for Knowledge Graph Embeddings
نویسندگان
چکیده
We introduce an adversarial learning framework, which we named KBGAN, to improve the performances of a wide range of existing knowledge graph embedding models. Because knowledge graph datasets typically only contain positive facts, sampling useful negative training examples is a non-trivial task. Replacing the head or tail entity of a fact with a uniformly randomly selected entity is a conventional method for generating negative facts used by many previous works, but the majority of negative facts generated in this way can be easily discriminated from positive facts, and will contribute little towards the training. Inspired by generative adversarial networks (GANs), we use one knowledge graph embedding model as a negative sample generator to assist the training of our desired model, which acts as the discriminator in GANs. The objective of the generator is to generate difficult negative samples that can maximize their likeliness determined by the discriminator, while the discriminator minimizes its training loss. This framework is independent of the concrete form of generator and discriminator, and therefore can utilize a wide variety of knowledge graph embedding models as its building blocks. In experiments, we adversarially train two translation-based models, TRANSE and TRANSD, each with assistance from one of the two probability-based models, DISTMULT and COMPLEX. We evaluate the performances of KBGAN on the link prediction task, using three knowledge base completion datasets: FB15k-237, WN18 and WN18RR. Experimental results show that adversarial training substantially improves the performances of target embedding models under various settings.
منابع مشابه
Ularized with a Unified Embedding
Injecting adversarial examples during training, known as adversarial training, can improve robustness against one-step attacks, but not for unknown iterative attacks. To address this challenge, we first show iteratively generated adversarial images easily transfer between networks trained with the same strategy. Inspired by this observation, we propose cascade adversarial training, which transf...
متن کاملLabeling Subgraph Embeddings and Cordiality of Graphs
Let $G$ be a graph with vertex set $V(G)$ and edge set $E(G)$, a vertex labeling $f : V(G)rightarrow mathbb{Z}_2$ induces an edge labeling $ f^{+} : E(G)rightarrow mathbb{Z}_2$ defined by $f^{+}(xy) = f(x) + f(y)$, for each edge $ xyin E(G)$. For each $i in mathbb{Z}_2$, let $ v_{f}(i)=|{u in V(G) : f(u) = i}|$ and $e_{f^+}(i)=|{xyin E(G) : f^{+}(xy) = i}|$. A vertex labeling $f$ of a graph $G...
متن کاملGenerative Adversarial Nets for Multiple Text Corpora
Generative adversarial nets (GANs) have been successfully applied to the artificial generation of image data. In terms of text data, much has been done on the artificial generation of natural language from a single corpus. We consider multiple text corpora as the input data, for which there can be two applications of GANs: (1) the creation of consistent cross-corpus word embeddings given differ...
متن کاملCascade Adversarial Machine Learning Regularized with a Unified Embedding
Deep neural network classifiers are vulnerable to small input perturbations carefully generated by the adversaries. Injecting adversarial inputs during training, known as adversarial training, can improve robustness against one-step attacks, but not for unknown iterative attacks. To address this challenge, we propose to utilize embedding space for both classification and low-level (pixel-level)...
متن کاملAdversarial Training Methods for Semi-supervised Text Classification
Adversarial training provides a means of regularizing supervised learning algorithms while virtual adversarial training is able to extend supervised learning algorithms to the semi-supervised setting. However, both methods require making small perturbations to numerous entries of the input vector, which is inappropriate for sparse high-dimensional inputs such as one-hot word representations. We...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1711.04071 شماره
صفحات -
تاریخ انتشار 2017