INITIAL-BOUNDARY VALUE PROBLEMS FOR LINEAR AND SOLITON PDEs
نویسندگان
چکیده
Evolution PDEs for dispersive waves are considered in both linear and nonlinear integrable cases, and initial-boundary value problems associated with them are formulated in spectral space. A method of solution is presented, which is based on the elimination of the unknown boundary values by proper restrictions of the functional space and of the spectral variable complex domain. Illustrative examples include the linear Schrödinger equation on compact and semicompact n-dimensional domains and the nonlinear Schrödinger equation on the semiline.
منابع مشابه
Explicit soliton asymptotics for the Korteweg-de Vries equation on the half-line
There exists a distinctive class of physically significant evolution PDEs in one spatial dimension which can be treated analytically. A prototypical example of this class (which is referred to as integrable), is the Korteweg-de Vries equation. Integrable PDEs on the line can be analyzed by the so-called Inverse Scattering Transform (IST) method. A particularly powerful aspect of the IST is its ...
متن کاملZero-dispersion Limit for Integrable Equations on the Half-line with Linearisable Data
In recent years, there has been a series of results of Fokas and collaborators on boundary value problems for soliton equations (see [3] for a comprehensive review). The method of Fokas in [3] goes beyond existence and uniqueness. In fact, it reduces these problems to Riemann-Hilbert factorisation problems in the complex plane, thus generalising the existing theory which reduces initial value p...
متن کاملSoliton-like Solutions of the Complex Non-linear Klein-Gordon Systems in 1 + 1 Dimensions
In this paper, we present soliton-like solutions of the non-linear complex Klein-Gordon systems in 1+1 dimensions. We will use polar representation to introduce three different soliton-like solutions including, complex kinks (anti-kinks), radiative profiles, and localized wave-packets. Complex kinks (anti-kinks) are topological objects with zero electrical charges. Radiative profiles are object...
متن کاملSymbolic computation, soliton solutions and 3d- plotting of KP- (2+1) dimentional non-linear evolution equation
Nonlinear evolution wave equations (NEEs) are partial differential equations (PDEs) involving first or second order derivatives with respect to time. Such equations have been intensively studied for the past few decades [1-3] and several new methods to solve nonlinear PDEs either numerically or analytically are now available. Hirota's bilinear method is a powerful tool for obtaining a wide clas...
متن کاملQuasi-linear Dynamics in Nonlinear Schrödinger Equation with Periodic Boundary Conditions
It is shown that a large subset of initial data with finite energy (L norm) evolves nearly linearly in nonlinear Schrödinger equation with periodic boundary conditions. These new solutions are not perturbations of the known ones such as solitons, semiclassical or weakly linear solutions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002