Loop Groupoids and Twisted

نویسنده

  • Bernardo Uribe
چکیده

The purpose of this paper is to introduce the notion of loop groupoid LG associated to a groupoid G. After studying the general properties of LG, we show how this notion provides a very natural geometric interpretation for the twisted sectors of an orbifold [7], and for the inner local systems introduced by Ruan [14] by means of a natural generalization of the concept holonomy of a gerbe.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Twisted Drinfeld Double of a Finite Group via Gerbes and Finite Groupoids

The twisted Drinfeld double (or quasi-quantum double) of a finite group with a 3-cocycle is identified with a certain twisted groupoid algebra. The groupoid is the loop (or inertia) groupoid of the original group and the twisting is shown geometrically to be the loop transgression of the 3-cocycle. The twisted representation theory of finite groupoids is developed and used to derive properties ...

متن کامل

Several types of groupoids induced by two-variable functions

In this paper, we introduce the concept of several types of groupoids related to semigroups, viz., twisted semigroups for which twisted versions of the associative law hold. Thus, if [Formula: see text] is a groupoid and if [Formula: see text] is a function [Formula: see text], then [Formula: see text] is a left-twisted semigroup with respect to [Formula: see text] if for all [Formula: see text...

متن کامل

Integration of Twisted Poisson Structures

Poisson manifolds may be regarded as the infinitesimal form of symplectic groupoids. Twisted Poisson manifolds considered by Ševera and Weinstein [14] are a natural generalization of the former which also arises in string theory. In this note it is proved that twisted Poisson manifolds are in bijection with a (possibly singular) twisted version of symplectic groupoids.

متن کامل

Twisted Equivariant K-theory, Groupoids and Proper Actions

In this paper we define twisted equivariantK-theory for actions of Lie groupoids. For a Bredon-compatible Lie groupoid G, this defines a periodic cohomology theory on the category of finite G-CW-complexes with G-stable projective bundles. A classification of these bundles is shown. We also obtain a completion theorem and apply these results to proper actions of groups.

متن کامل

Twisted K-theory of Differentiable Stacks

In this paper, we develop twisted K-theory for stacks, where the twisted class is given by an S-gerbe over the stack. General properties, including the Mayer-Vietoris property, Bott periodicity, and the product structure K α ⊗K j β → K i+j α+β are derived. Our approach provides a uniform framework for studying various twisted K-theories including the usual twisted K-theory of topological spaces...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002