Function Spaces of Variable Smoothness and Integrability
نویسندگان
چکیده
A. In this article we introduce Triebel–Lizorkin spaces with variable smoothness and integrability. Our new scale covers spaces with variable exponent as well as spaces of variable smoothness that have been studied in recent years. Vector-valued maximal inequalities do not work in the generality which we pursue, and an alternate approach is thus developed. Applying it, we give molecular and atomic decomposition results and show that our space is well-defined, i.e., independent of the choice of basis functions. As in the classical case, a unified scale of spaces permits clearer results in cases where smoothness and integrability interact, such as Sobolev embedding and trace theorems. As an application of our decomposition we prove optimal trace theorems in the variable indices case.
منابع مشابه
Atomic and Molecular Decompositions in Variable Exponent 2-microlocal Spaces and Applications
In this article we study atomic and molecular decompositions in 2-microlocal Besov and Triebel–Lizorkin spaces with variable integrability. We show that, in most cases, the convergence implied in such decompositions holds not only in the distributions sense, but also in the function spaces themselves. As an application, we give a simple proof for the denseness of the Schwartz class in such spac...
متن کاملFUZZY GOULD INTEGRABILITY ON ATOMS
In this paper we study the relationships existing between total measurability in variation and Gould type fuzzy integrability (introduced and studied in [21]), giving a special interest on their behaviour on atoms and on finite unions of disjoint atoms. We also establish that any continuous real valued function defined on a compact metric space is totally measurable in the variation of a regula...
متن کاملChange of variable in spaces of mixed smoothness and numerical integration of multivariate functions on the unit cube
In a recent article by two of the present authors it turned out that Frolov’s cubature formulae are optimal and universal for various settings (Besov-Triebel-Lizorkin spaces) of functions with dominating mixed smoothness. Those cubature formulae go well together with functions supported inside the unit cube [0, 1]. The question for the optimal numerical integration of multivariate functions wit...
متن کاملMultidimensional Lévy White Noise in Weighted Besov Spaces
In this paper, we study the Besov regularity of a general d-dimensional Lévy white noise. More precisely, we describe new sample paths properties of a given noise in terms of weighted Besov spaces. In particular, we characterize the smoothness and integrability properties of the noise using the indices introduced by Blumenthal, Getoor, and Pruitt. Our techniques rely on wavelet methods and gene...
متن کاملRiesz and Wolff potentials and elliptic equations in variable exponent weak Lebesgue spaces ∗
We prove optimal integrability results for solutions of the p(·)-Laplace equation in the scale of (weak) Lebesgue spaces. To obtain this, we show that variable exponent Riesz and Wolff potentials map L to variable exponent weak Lebesgue spaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008