Spherical self-organizing map using efficient indexed geodesic data structure

نویسندگان

  • Yingxin Wu
  • Masahiro Takatsuka
چکیده

The two-dimensional (2D) Self-Organizing Map (SOM) has a well-known "border effect". Several spherical SOMs which use lattices of the tessellated icosahedron have been proposed to solve this problem. However, existing data structures for such SOMs are either not space efficient or are time consuming when searching the neighborhood. We introduce a 2D rectangular grid data structure to store the icosahedron-based geodesic dome. Vertices relationships are maintained by their positions in the data structure rather than by immediate neighbor pointers or an adjacency list. Increasing the number of neurons can be done efficiently because the overhead caused by pointer updates is reduced. Experiments show that the spherical SOM using our data structure, called a GeoSOM, runs with comparable speed to the conventional 2D SOM. The GeoSOM also reduces data distortion due to removal of the boundaries. Furthermore, we developed an interface to project the GeoSOM onto the 2D plane using a cartographic approach, which gives users a global view of the spherical data map. Users can change the center of the 2D data map interactively. In the end, we compare the GeoSOM to the other spherical SOMs by space complexity and time complexity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Spherical Self Organizing Map - Use of Indexed Geodesic Data Structure -

In order to remove the “border effect”, several spherical Self-Organizing Maps (SOM) based on the geodesic dome have been proposed. However, existing neighborhood searching methods on the geodesic dome are much more time-consuming than searching on the normal rectangular/hexagonal grid. In this paper, we present detailed descriptions of the algorithms used in training the Geodesic SOM (GeoSOM),...

متن کامل

Geodesic self-organizing map

Self-Organizing map (SOM) is a widely used tool to find clustering and also to visualize high dimensional data. Several spherical SOMs have been proposed to create a more accurate representation of the data by removing the “border effect”. In this paper, we compare several spherical lattices for the purpose of implementation of a SOM. We then introduce a 2D rectangular grid data structure for r...

متن کامل

The Geodesic Self-Organizing Map and Its Error Analysis

The Self-Organizing Map (SOM) is one of the popular Artificial Neural Networks which is a useful in clustering and visualizing complex high dimensional data. Conventional SOMs are based on the two-dimensional (2D) grid structure, which usually results in less accurate representation of the data. Several SOMs using spherical data structures have been proposed to remove the “border effect”. In th...

متن کامل

Path finding on a spherical SOM using the distance transform and floodplain analysis

Data visualization has become an important tool for analyzing very complex data. In particular, spatial visualization enables users to view data in a intuitive manner. It has typically been used to externalize clusters and their relationships which exist in highly complex multidimensional data. We envisage that not only cluster formation and relationships but also other types of information, su...

متن کامل

Landforms identification using neural network-self organizing map and SRTM data

During an 11 days mission in February 2000 the Shuttle Radar Topography Mission (SRTM) collected data over 80% of the Earth's land surface, for all areas between 60 degrees N and 56 degrees S latitude. Since SRTM data became available, many studies utilized them for application in topography and morphometric landscape analysis. Exploiting SRTM data for recognition and extraction of topographic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neural networks : the official journal of the International Neural Network Society

دوره 19 6-7  شماره 

صفحات  -

تاریخ انتشار 2006