Interactive Instruction in Bayesian Inference

نویسندگان

  • Azam Khan
  • Simon Breslav
  • Kasper Hornbæk
چکیده

An instructional approach is presented to improve human performance in solving Bayesian inference problems. Starting from the original text of the classic Mammography Problem, the textual expression is modified and visualizations are added according to Mayer’s principles of instruction. These principles concern coherence, personalization, signaling, segmenting, multimedia, spatial contiguity, and pre-training. Principles of self-explanation and interactivity are also applied. Four experiments on the Mammography Problem showed that these principles help participants answer the questions at significantly improved rates. Nonetheless, in novel interactivity conditions, performance was lowered suggesting that more interaction can add more difficulty for participants. Overall, a leap forward in accuracy was found, with more than twice the participant accuracy of previous work. This indicates that an instructional approach to improving human performance in Bayesian inference is a promising direction. CONTENTS

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian approach to inference of population structure

Methods of inferring the population structure‎, ‎its applications in identifying disease models as well as foresighting the physical and mental situation of human beings have been finding ever-increasing importance‎. ‎In this article‎, ‎first‎, ‎motivation and significance of studying the problem of population structure is explained‎. ‎In the next section‎, ‎the applications of inference of p...

متن کامل

Bayesian Network Models for Generation of Crisis Management Training Scenarios

We present a noisy-OR Bayesian network model for simulation-based training, and an efficient search-based algorithm for automatic synthesis of plausible training scenarios from constraint specifications. This randomized algorithm for approximate causal inference is shown to outperform other randomized methods, such as those based on perturbation of the maximally plausible scenario. It has the a...

متن کامل

An Introduction to Inference and Learning in Bayesian Networks

Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...

متن کامل

Implementation of Traditional (S-R)-Based PM Method with Bayesian Inference

In order to perform Preventive Maintenance (PM), two approaches have evolved in the literature. The traditional approach is based on the use of statistical and reliability analysis of equipment failure. Under statistical-reliability (S-R)-based PM, the objective of achieving the minimum total cost is pursued by establishing fixed PM intervals, which are statistically optimal, at which to replac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Human-Computer Interaction

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2018