Connexin mimetic peptides fail to inhibit vascular conducted calcium responses in renal arterioles.
نویسندگان
چکیده
Vascular conducted responses are believed to play a central role in controlling the microcirculatory blood flow. The responses most likely spread through gap junctions in the vascular wall. At present, four different connexins (Cx) have been detected in the renal vasculature, but their role in transmission of conducted vasoconstrictor signals in the preglomerular arterioles is unknown. Connexin mimetic peptides were previously reported to target and inhibit specific connexins. We, therefore, investigated whether conducted vasoconstriction in isolated renal arterioles could be blocked by the use of mimetic peptides directed against one or more connexins. Preglomerular resistance vessels were microdissected from kidneys of Sprague-Dawley rats and loaded with fura 2. The vessels were stimulated locally by applying electrical current through a micropipette, and the conducted calcium response was measured 500 mum from the site of stimulation. Application of connexin mimetic peptides directed against Cx40, 37/43, 45, or a cocktail with equimolar amounts of each, did not inhibit the propagated response, whereas the nonselective gap junction uncoupler carbenoxolone completely abolished the propagated response. However, the connexin mimetic peptides were able to reduce dye coupling between rat aorta endothelial cells shown to express primarily Cx40. In conclusion, we did not observe any attenuating effects on conducted calcium responses in isolated rat interlobular arteries when exposed to connexin mimetic peptides directed against Cx40, 37/43, or 45. Further studies are needed to determine whether conducted vasoconstriction is mediated via previously undescribed pathways.
منابع مشابه
Modulation of membrane channel currents by gap junction protein mimetic peptides: size matters.
Connexin mimetic peptides are widely used to assess the contribution of nonjunctional connexin channels in several processes, including ATP release. These peptides are derived from various connexin sequences and have been shown to attenuate processes downstream of the putative channel activity. Yet so far, no documentation of effects of peptides on connexin channels has been presented. We teste...
متن کاملConnexin mimetic peptides reversibly inhibit Ca(2+) signaling through gap junctions in airway cells.
The effect of peptides with sequences derived from connexins, the constituent proteins of gap junctions, on mechanically stimulated intercellular Ca(2+) signaling in tracheal airway epithelial cells was studied. Three peptides with sequences corresponding to connexin extracellular loop regions reversibly restricted propagation of Ca(2+) waves to neighboring cells. Recovery of communication bega...
متن کاملIntegrating multiple paracrine regulators of renal microvascular dynamics.
There has been tremendous growth in our knowledge about the multiple interacting mechanisms that regulate renal microvascular function. Paracrine signals originating from endothelial and epithelial cells exert profound influences on the basal tone and reactivity of the pre- and postglomerular arterioles. Selective responsiveness of these arterioles to various stimuli is possible because of diff...
متن کاملThe role of L- and T-type calcium channels in local and remote calcium responses in rat mesenteric terminal arterioles.
BACKGROUND/AIMS The roles of intercellular communication and T-type versus L-type voltage-dependent Ca(2+) channels (VDCCs) in conducted vasoconstriction to local KCl-induced depolarization were investigated in mesenteric arterioles. METHODS Ratiometric Ca(2+) imaging (R) using Fura-PE3 with micro-ejection of depolarizing KCl solution and VDCC blockers, and immunohistochemical and RT-PCR tech...
متن کاملNAADP receptors mediate calcium signaling stimulated by endothelin-1 and norepinephrine in renal afferent arterioles.
The enzyme ADP-ribosyl (ADPR) cyclase plays a significant role in mediating increases in renal afferent arteriolar cytosolic calcium concentration ([Ca(2+)](i)) in vitro and renal vasoconstriction in vivo. ADPR cyclase produces cyclic ADP ribose, a second messenger that contributes importantly to ryanodine receptor-mediated Ca(2+) mobilization in renal vascular responses to several vasoconstric...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 295 3 شماره
صفحات -
تاریخ انتشار 2008