Dicritical Logarithmic Foliations

نویسندگان

  • Felipe Cano
  • Nuria Corral
  • F. Cano
  • N. Corral
چکیده

We show the existence of weak logarithmic models for any (dicritical or not) holomorphic foliation F of (C, 0) without saddlenodes in its desingularization. The models are written in terms of a representative set of separatrices, whose equisingularity types are controlled by the Milnor number of the foliation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algebraic Integrability of Foliations of the Plane

We give an algorithm to decide whether an algebraic plane foliation F has a rational first integral and to compute it in the affirmative case. The algorithm runs whenever we assume the polyhedrality of the cone of curves of the surface obtained after blowing-up the set BF of infinitely near points needed to get the dicritical exceptional divisors of a minimal resolution of the singularities of ...

متن کامل

Rigidity for Dicritical Germ of Foliation in C

We study some kind of rigidity property for dicritical foliation in C 2 thanks to a new meromorphic function associated to any dicriti-cal foliation playing the role of equation of separatrix. To be more specific, we compute infinitesimal obstructions for realizing the holon-omy pseudo-group of a dicritical foliation F on any source manifold of a blowing-up morphism with same dual tree as the d...

متن کامل

Existence of Dicritical Divisors

We prove an existence theorem for dicritical divisors.

متن کامل

on projective spaces

We prove that a one-dimensional foliation with generic singularities on a projective space, exhibiting a Lie group transverse structure in the complement of some codimension one algebraic subset is logarithmic, i.e., it is the intersection of codimension one foliations given by closed one-forms with simple poles. If there is only one singularity in a suitable affine space, then the foliation is...

متن کامل

Logarithmic Jets and Hyperbolicity 0. Introduction

We prove that the complement of a very generic curve of degree d at least equal to 15 in P is hyperbolic in the sens of Kobayashi (here, the terminology “very generic” refers to complements of countable unions of proper algebraic subsets of the parameter space). We first consider the Dethloff and Lu’s generalisation to the logarithmic situation of Demailly’s jet bundles. We study their base loc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006