On the convergence properties of a K-step averaging stochastic gradient descent algorithm for nonconvex optimization

نویسندگان

  • Fan Zhou
  • Guojing Cong
چکیده

Despite their popularity, the practical performance of asynchronous stochastic gradient descent methods (ASGD) for solving large scale machine learning problems are not as good as theoretical results indicate. We adopt and analyze a synchronous K-step averaging stochastic gradient descent algorithm which we call K-AVG. We establish the convergence results of KAVG for nonconvex objectives, and show that it scales much better than ASGD. In addition, we explain why the K-step delay is necessary and leads to better performance than traditional parallel stochastic gradient descent which is equivalent to K-AVG with K = 1. Another advantage of K-AVG over ASGD is that it allows larger stepsizes. On a cluster of 128 GPUs, K-AVG is faster than ASGD implementations and achieves better accuracies and faster convergence for CIFAR-10 dataset.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Block Mirror Descent Methods for Nonsmooth and Stochastic Optimization

In this paper, we present a new stochastic algorithm, namely the stochastic block mirror descent (SBMD) method for solving large-scale nonsmooth and stochastic optimization problems. The basic idea of this algorithm is to incorporate the block-coordinate decomposition and an incremental block averaging scheme into the classic (stochastic) mirror-descent method, in order to significantly reduce ...

متن کامل

ar X iv : 1 30 9 . 22 49 v 1 [ m at h . O C ] 9 S ep 2 01 3 STOCHASTIC BLOCK MIRROR DESCENT METHODS FOR NONSMOOTH AND STOCHASTIC OPTIMIZATION ∗

Abstract. In this paper, we present a new stochastic algorithm, namely the stochastic block mirror descent (SBMD) method for solving large-scale nonsmooth and stochastic optimization problems. The basic idea of this algorithm is to incorporate the block-coordinate decomposition and an incremental block averaging scheme into the classic (stochastic) mirror-descent method, in order to significant...

متن کامل

Parallel Asynchronous Stochastic Variance Reduction for Nonconvex Optimization

Nowadays, asynchronous parallel algorithms have received much attention in the optimization field due to the crucial demands for modern large-scale optimization problems. However, most asynchronous algorithms focus on convex problems. Analysis on nonconvex problems is lacking. For the Asynchronous Stochastic Descent (ASGD) algorithm, the best result from (Lian et al., 2015) can only achieve an ...

متن کامل

Stochastic Variance Reduction for Nonconvex Optimization

We study nonconvex finite-sum problems and analyze stochastic variance reduced gradient (Svrg) methods for them. Svrg and related methods have recently surged into prominence for convex optimization given their edge over stochastic gradient descent (Sgd); but their theoretical analysis almost exclusively assumes convexity. In contrast, we prove non-asymptotic rates of convergence (to stationary...

متن کامل

A Simple Proximal Stochastic Gradient Method for Nonsmooth Nonconvex Optimization

We analyze stochastic gradient algorithms for optimizing nonconvex, nonsmooth finite-sum problems. In particular, the objective function is given by the summation of a differentiable (possibly nonconvex) component, together with a possibly non-differentiable but convex component. We propose a proximal stochastic gradient algorithm based on variance reduction, called ProxSVRG+. The algorithm is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1708.01012  شماره 

صفحات  -

تاریخ انتشار 2017