Manifold-Manifold Distance and its Application to Face Recognition With Image Sets
نویسندگان
چکیده
In this paper, we address the problem of classifying image sets for face recognition, where each set contains images belonging to the same subject and typically covering large variations. By modeling each image set as a manifold, we formulate the problem as the computation of the distance between two manifolds, called manifold-manifold distance (MMD). Since an image set can come in three pattern levels, point, subspace, and manifold, we systematically study the distance among the three levels and formulate them in a general multilevel MMD framework. Specifically, we express a manifold by a collection of local linear models, each depicted by a subspace. MMD is then converted to integrate the distances between pairs of subspaces from one of the involved manifolds. We theoretically and experimentally study several configurations of the ingredients of MMD. The proposed method is applied to the task of face recognition with image sets, where identification is achieved by seeking the minimum MMD from the probe to the gallery of image sets. Our experiments demonstrate that, as a general set similarity measure, MMD consistently outperforms other competing nondiscriminative methods and is also promisingly comparable to the state-of-the-art discriminative methods.
منابع مشابه
بهبود مدل تفکیککننده منیفلدهای غیرخطی بهمنظور بازشناسی چهره با یک تصویر از هر فرد
Manifold learning is a dimension reduction method for extracting nonlinear structures of high-dimensional data. Many methods have been introduced for this purpose. Most of these methods usually extract a global manifold for data. However, in many real-world problems, there is not only one global manifold, but also additional information about the objects is shared by a large number of manifolds...
متن کاملMulti-manifold metric learning for face recognition based on image sets
In this paper, we propose a new multi-manifold metric learning (MMML) method for the task of face recognition based on image sets. Different from most existing metric learning algorithms that learn the distance metric for measuring single images, our method aims to learn distance metrics to measure the similarity between manifold pairs. In our method, each image set is modeled as a manifold and...
متن کاملFace Recognition from One Sample per Person
As one of the most visible applications in computer vision communication, face recognition (FR) has become significant role in the community. In the past decade, researchers have been devoting themselves to addressing the various problems emerging in practical FR applications in uncontrolled or less controlled environment. In many practical applications of FR (e.g., law enforcement, e-passport,...
متن کاملA Survey of Manifold Learning for Images
Many natural image sets are samples of a low-dimensional manifold in the space of all possible images. Understanding this manifold is a key first step in understanding many sets of images, and manifold learning approaches have recently been used within many application domains, including face recognition, medical image segmentation, gait recognition and hand-written character recognition. This ...
متن کاملFace Recognition using an Affine Sparse Coding approach
Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
دوره 21 10 شماره
صفحات -
تاریخ انتشار 2012