Determinant role of tunneling resistance in electrical conductivity of polymer composites reinforced by well dispersed carbon nanotubes
نویسندگان
چکیده
Three-dimensional Monte Carlo simulation is used to investigate the electrical conductivity of nanocomposites composing of conducting nanofillers and insulating polymer matrix. When nanofillers concentrations low and they are well dispersed in the insulating matrix, electron tunneling resistance between the nanofiller junctions is found to play the dominant role in electron transport. In addition to the tunneling resistance, there is also the resistance of the conducting nanotube segments. These two types of resistance form the resistor network for electron conductance. For composites with well dispersion, individual tubes are separated by polymer molecules and the resulted tunneling resistance can be several orders larger in magnitude than the resistance of individual tubes. Considering the two types of resistors are always linked in an alternating order in the resistor network, the much larger tunneling resistance plays the determinant role in the electrical resistance of nanocomposites. When the contribution of the intrinsic tube resistance is ignored, the number of resistors in conduction paths can be reduced by more than a half and as a result, the computation efficiency is significantly improved. With improved computation efficiency, three-dimensional cubic representative volume elements with high nanotube aspect ratios up to 1000 can be simulated. Simulation results are in good agreement with the critical behaviors predicted by the classical percolation theory, as well as the reported experimental measurements. © 2010 American Institute of Physics. doi:10.1063/1.3499628
منابع مشابه
Electrical and electromagnetic properties of isolated carbon nanotubes and carbon nanotube-based composites
Isolated carbon nanotubes (CNTs), CNT films and CNT-polymer nanocomposites are a new generation of materials with outstanding mechanical, thermal, electrical and electromagnetic properties. The main objective of this article is to provide a comprehensive review on the investigations performed in the field of characterizing electrical and electromagnetic properties of isolated CNTs and CNT-reinf...
متن کاملCellular Structures of Carbon Nanotubes in a Polymer Matrix Improve Properties Relative to Composites with Dispersed Nanotubes
A new processing method has been developed to combine a polymer and single wall carbon nanotubes (SWCNTs) to form electrically conductive composites with desirable rheological and mechanical properties. The process involves coating polystyrene (PS) pellets with SWCNTs and then hot pressing to make a contiguous, cellular SWCNT structure. By this method, the electrical percolation threshold decre...
متن کاملInvestigation of Crack Resistance in Single Walled Carbon Nanotube Reinforced Polymer Composites Based on FEM
Carbon nanotube (CNT) is considered as a new generation of material possessing superior mechanical, thermal and electrical properties. The applications of CNT, especially in composite materials, i.e. carbon nanotube reinforced polymer have received great attention and interest in recent years. To characterize the influence of CNT on the stress intensity factor of nanocomposites, three fracture ...
متن کاملFabrication and application of polymer composites comprising carbon nanotubes.
Carbon nanotubes are being used in place of carbon fibers in making composites due to their high strength, high aspect-ratio and excellent thermal and electrical conductivity. Although carbon nanotubes were discovered more than a decade ago, works on preparation of satisfactory composites reinforced by carbon nanotubes have encountered difficulties. This review will discuss some registered pate...
متن کاملFinite Element Analysis of Low Velocity Impact on Carbon Fibers/Carbon Nanotubes Reinforced Polymer Composites
An effort is made to gain insight on the effect of carbon nanotubes (CNTs) on the impact response of carbon fiber reinforced composites (CFRs) under low velocity impact. Certain amount of CNTs could lead improvements in mechanical properties of composites. In the present investigation, ABAQUS/Explicit finite element code (FEM) is employed to investigate various damages modes of nano composites ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010